Scalar and anisotropic J interactions in undoped InP: A triple-resonance NMR study

Marco Tomaselli, David deGraw, Jeffery L. Yarger, Matthew P. Augustine, and Alexander Pines

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
and Department of Chemistry, University of California, Berkeley, California 94720
(Received 6 April 1998)

The heteronuclear J-coupling tensor between nearest neighbor ^{31}P and $^{113,115}\text{In}$ spins in undoped InP is investigated by means of $^{113}\text{In}-^{31}\text{P}$ polarization transfer under rapid magic angle spinning (MAS). The scalar contribution can be measured directly and is found to have the value $|J(31\text{P}, 113,115\text{In})|= (225 \pm 10)$ Hz. The principal value of the traceless anisotropic J-coupling tensor (pseudodipolar coupling) is determined to be $J(31\text{P}, 113,115\text{In})-J(113\text{In}, 115\text{In})= (813 \pm 50)$ Hz, assuming axial symmetry with the principal axis parallel to the In-P bond. Our values deviate from those reported previously [M. Engelsberg and R. E. Norberg, Phys. Rev. B 5, 3395 (1972)] based on a moment analysis of the ^{31}P resonance $J(31\text{P}, 113,115\text{In})= 350$ Hz and $J(31\text{P}, 113,115\text{In})= 1273$ Hz, but confirm the postulate that the nearest neighbor $^{31}\text{P}, 113,115\text{In}$ magnetic dipolar and pseudodipolar interactions are of the same order of magnitude and partially cancel each other. [S0163-1829(98)07137-9]

I. INTRODUCTION

It was recognized early that the electron-coupled nuclear-spin interactions (J coupling) in III-V binary semiconducting compounds with zinc-blende structure play a key role in the understanding of the experimentally observed nuclear magnetic resonance (NMR) spectra. The accurate measurement of direct and indirect J couplings in bulk and nanostructured III-V compounds is important in light of the determination of their electronic structures and can complement optical studies. InP is a prominent example where “anomalous” ^{31}P NMR linewidths have been observed and ascribed to the relative magnitudes of the direct heteronuclear anisotropic J coupling and the through-space dipole coupling. In their pioneering work, Engelsberg and Norberg found that the dominant $^{31}\text{P}, 113,115\text{In}$ contribution to the second moment of the ^{31}P resonance is a factor of 2 smaller than expected from the dipole-dipole interactions alone. Their finding was explained by a cancellation of the through-space dipole coupling between ^{31}P and $^{113,115}\text{In}$ by the anisotropic part of the direct neighbor $^{31}\text{P}, 113,115\text{In}$ J-coupling tensor. More recently, Adolphi, Conradi, and Buhro corroborated this assertion and obtained reasonable agreement with their experimental ^{31}P MAS spectrum, $v_{1/2} \approx 4$ kHz, by calculating the nearest-neighbor scalar linewidth using Engelsberg and Norberg’s result of $J(31\text{P}, 113,115\text{In})= 350$ Hz.

In contrast, Vanderah et al. ascribed the observed ^{31}P MAS linewidth in InP, to quadrupolar effects of the neighboring ^{115}In spins. Indeed, Han et al. observed spinning sidebands in the $^{113,115}\text{In}$ MAS spectra of InP. In their analysis, the broadening was attributed to small distributions of electric field gradients (EFG) causing some spreading of the satellite transition frequencies of $^{113,115}\text{In}$ at or near crystal defect sites.

In the present work, $^{31}\text{P}, 113\text{In}, 115\text{In}$ triple resonance combined with magic angle spinning is used to determine the dominant contributions to the ^{31}P linewidth. The heteronuclear J-coupling tensor between nearest-neighbor ^{31}P and $^{113,115}\text{In}$ spins in undoped InP is investigated by means of $^{113}\text{In}-^{31}\text{P}$ polarization transfer under rapid magic angle spinning (MAS). Our results confirm that indium quadrupolar coupling constants in zinc-blende compounds are small and do not affect the observed NMR spectra, as previously predicted. We confirm Engelsberg and Norberg’s postulate that the ^{31}P NMR linewidth in InP is determined by the relative magnitude and sign of the direct heteronuclear anisotropic J coupling and the through-space dipole coupling. The obtained values for $J(31\text{P}, 113,115\text{In})$, $J(31\text{P}, 113,115\text{In})$, and $J(31\text{P}, 113,115\text{In})$, however, significantly deviate from previous results based on a moment analysis.

II. EXPERIMENT

MAS experiments were performed on an InP single crystal of cylindrical shape (sample-1: 3 mm height; 2 mm diameter) with the [100] crystal axis inclined at the magic angle ($\Theta = 54.74^\circ$) with respect to the external magnetic field B_0. The sample was machined from a large undoped [100] InP single crystal (99.999% purity; $N_D-N_A = 5.7 \times 10^{15}$ cm$^{-3}$; $\mu_{300K} = 3900$ cm2/Vs) purchased from Crystalloids Inc. Somerville, New York. A powder sample of the same material (sample-2) was prepared by grinding the above single crystal in a agate mortar. All MAS experiments were performed at ambient temperature on a Chemagnetics CMX spectrometer operating at a proton frequency of 400 MHz using a standard 4 mm MAS probe assembly from the same manufacturer. $v_0(31\text{P}) = 161.196$ MHz, $v_0(115\text{In}) = 87.753$ MHz, and $v_0(113\text{In}) = 87.565$ MHz. The MAS frequency was stabilized within 3 Hz for all experiments. Measurements with a static sample were performed on a home-built spectrometer operating at a proton frequency of 300 MHz [$v_0(31\text{P}) = 121.93$ MHz, $v_0(115\text{In}) = 66.055$ MHz] using a
home-doped InP single crystal of rectangular shape (sample-3: 3 × 3 × 1 mm) was used to measure the anisotropy of the ^{31}P line shape. All ^{31}P ($I=1/2$) spectra were obtained by cross-polarization from ^{115}In or ^{113}In ($113,115\text{S}=9/2$). In both setups (MAS and static) the radio-frequency (rf) field strength on all channels (^{31}P, ^{115}In, and ^{113}In) was matched to 28 kHz. Numerical calculations for the MAS data were performed in the framework of the simulation environment GAMMA. The skin depth d (Ref. 19) is estimated from the conductivity data of the InP material. For $v_0(31\text{P})=161.196$ MHz we obtain $d \sim 3$ mm, which is in the order of the dimension of the single crystal samples. Nonuniform penetration of the rf field into the InP samples (single crystals and powder) was not observed in our experiments.

III. NMR InP

A. ^{31}P line shape under MAS and ^{115}In decoupling

Figure 1 shows a set of ^{31}P spectra taken from the undoped InP powder sample. All spectra were obtained by a cross polarization from the abundant ^{115}In spins (^{115}S = 9/2; 95.72%) using a contact time of 0.5 ms. The spectrum in Fig. 1(a) was recorded under static conditions with no ^{115}In decoupling during the acquisition time. Spectrum (b) was acquired under static conditions with ^{115}In decoupling using $\omega_{1,5}/2\pi = 60$ kHz. In both cases the line shape clearly deviates from a Gaussian and we characterize the spectra by numerically calculating the second moment (M_2) of the ^{31}P resonance. We obtain a value of $\sqrt{M_2}/2\pi = 2.74 \pm 0.2$ kHz for spectrum (a) and $\sqrt{M_2}/2\pi = 0.60 \pm 0.1$ kHz for spectrum (b). Both values are in reasonable agreement with the ones given by Engelsberg and Norberg and corroborate their finding that the undecoupled ^{31}P line shape [Fig. 1(a)] is dominated by ^{115}In-^{31}P couplings. The experimental second moment is about a factor of 2 smaller than expected from through-space dipole couplings alone. The second moment obtained for spectrum (b) agrees with the calculated value of $\sqrt{M_2}/2\pi = 0.70$ kHz based on through-space ^{31}P-^{31}P dipolar interactions alone.

It should be noted that the Hartmann-Hahn condition for the cross polarization from ^{115}In (S) to ^{31}P (I) was matched at $\omega_{1,5} = \omega_{1,1}$ which is efficient when $|Q(115\text{In})| \ll |Q(11^3\text{In})|$ (where Q denotes the first order quadrupole splitting). Hence, the spectra shown in Fig. 1 are representative for ^{31}P nuclei ^{115}In with $Q = 0$, and quadrupole splitting effects due to potential crystal defects sites (i.e., dangling bonds on the surface, grain boundaries, bond strains, vacancies, substitutional defects) are suppressed. A series of ^{115}In nutation spectra with 2 kHz= $\omega_{1,5}/2\pi \leq 25$ kHz (data not shown) recorded for the InP single crystal sample-3 additionally indicated that $|Q(115\text{In})| \sim 0$ throughout the crystal as expected for a cubic zinc-blende lattice.

Spectra (c) and (d) in Fig. 1 were obtained under rapid MAS conditions ($\omega_{1,5}/2\pi = 10$ kHz) with additional on-resonance ^{115}In decoupling ($\omega_{1,5}/2\pi = 60$ kHz) during the acquisition period in (d). Identical spectra were obtained when the spinning speed was increased to $\omega_{1,5}/2\pi = 18$ kHz. Rapid magic angle spinning averages all interactions described by second rank tensors and thus, removes broadenings due to through-space dipolar, pseudodipolar and possible chemical shielding interactions affecting the ^{31}P line shape. The line shape is accurately described by a Gaussian in case (c). We obtain a full width at half height $v_{1/2}=2.36\sqrt{M_2}/2\pi = 3.2 \pm 0.1$ kHz [see fit included in Fig. 1(c)]. Assuming that the second moment of spectrum (c) is determined by the local field of the 4 nearest ^{115}In neighbors (caused by the scalar part of the ^{31}P-^{115}In coupling tensor) we estimate $|J_{15}^{\text{iso}}|=(250 \pm 50)$ Hz. The ob-
tained linewidth in spectrum (c) and therefore our estimate for $|J_{\text{IS}}|$ deviates from previous results where $v_{1/2} \approx 4$ kHz was reported.12,13

The narrow peak in spectrum (d) (MAS and 115In on-resonance decoupling) is well described by a Lorentzian with $v_{1/2} = 40$ Hz displaying only the isotropic part of the homonuclear 31P interactions: the chemical shift is $\delta^{(31)P} = -147$ ppm relative to the 85% H$_2$PO$_4$ standard.24 The residual broadening in spectrum (d) is most likely due to bulk-susceptibility effects. The most interesting feature in (d), however, is the fine structure near the baseline of the spectrum shown in the inset of Fig. 1(d). This structure reveals the satellite spectrum of 31P broadened by the local field of the rare 113In spins (113S = 9/2; 4.28%). Assuming that the satellite spectrum is caused by the nearest neighbor 113In in spins the coupling Hamiltonian can be written as

$$H = H_{\text{IS}} + H_{\text{II}} = 2 \pi J_{\text{IS}}^{\text{iso}} \sum_{j=1}^{4} I_{jz} + 2 \pi J_{\text{II}}^{\text{iso}} \sum_{j<k} I_{jz} I_{kz}. \quad (1)$$

Since $[H_{\text{IS}}, H_{\text{II}}] = 0$ and $[F_x, H_{\text{II}}] = 0$, where $F_x = \sum_j I_{jx}$ denotes the detection operator, the homonuclear J spin scalar J couplings do not affect the spectrum. Thus the 31P multiplet with a single 113In neighbor consists of 10 lines of equal intensity, spaced by $J_{\text{IS}}^{\text{iso}}$. Such a spectrum can indeed be observed for InP [see Fig. 2(a)] when a cross polarization from 113In to 31P is performed at the exact centerband Hartmann-Hahn condition$^{27-29}$ ($\omega_{15} = \omega_{11}$) under rapid MAS and 115In decoupling during the acquisition period. The spectrum shown in Fig. 2(a) was recorded with $\omega_0/2\pi = 10$ kHz and a contact time of $\tau_{cp} = 0.8$ ms. An identical spectrum was obtained when the spinning speed was increased to $\omega_0/2\pi = 18$ kHz. The details of the applied rf pulse sequence is displayed as an inset in Fig. 2(a). From the analysis of the multiplet in (a) we obtain for the nearest neighbor scalar J coupling $|J_{\text{IS}}^{\text{iso}}| = (225 \pm 10)$ Hz.30 The value can be compared to our previous estimate of 250 ± 50 Hz based on spectrum (c) in Fig. 1 and to the value reported by others (350 Hz).11,12 This demonstrates that isotropic J couplings obtained by a moment analysis of featureless static or MAS spectra11,12,23 may deviate from the correct result by up to $\sim 50\%$.

Two additional features of the spectrum shown in Fig. 2(a) should be mentioned. First, a gradual decrease of the peak heights of the 10-line multiplet from the $\pm 9/2$ (outer) to the $\pm 1/2$ (inner) spin states of 113In is observed. This can be explained by the longer lifetimes of the higher indium spin states. A similar trend has been observed by Wasyliszen et al.15 in a indium tri bromid-tri arylphosphine adduct compound. Second, the line in the center of the multiplet ($\sim 5\%$ of the total signal intensity) can be associated with the 36 next-nearest neighbor 31P spins, weakly polarized by their nonvanishing scalar J couplings ($J_{\text{IS}}^{\text{iso}}$) to the 113In.

B. 113In\rightarrow^{31}P polarization transfer under rapid magic angle spinning

For the spin system of one rare 113In (S) spin and 4 nearest-neighbor 31P (I) spins, the Hamiltonian active during the contact time of the cross-polarization experiment (see insets of Fig. 2), in the doubly rotating tilted frame,31,32 with z axis parallel to the rf irradiation, is approximated as

$$H = H_I + H_S + H_{\text{IS},\text{iso}} + H_{\text{II},b}(\tau). \quad (2)$$

Sufficiently strong resonant rf fields are assumed which lead to an efficient decoupling of the 113In spins. Chemical shift terms are negligible in InP. Since $\omega_{11} \gg b_{11}^k$, where b_{11}^k denote the effective phosphorous dipolar coupling constants, we neglect the nonsecular homonuclear 31P dipolar interaction $H_{\text{II},b}$. The interactions with the rf fields are given by $H_I = \omega_{11} F_z$ and $H_S = \omega_{13} S_z$. Dropping nonsecular terms with
respect to the truncation of the strong radio frequency fields, the heteronuclear scalar coupling interaction (time independent) is given by

$$H_{IS,z\omega} = \frac{\pi}{2} J^{aniso}_{IS} \sum_{j=1}^{4} (I^+_j S^- + I^-_j S^+).$$

(3)

MAS renders the through space dipolar and anisotropic J interactions time dependent:

$$H_{IS,\theta}(\tau) = \frac{1}{2} \sum_{j=1}^{4} \sum_{n=-2}^{2} b^n_{j} e^{i n \omega_{r} \tau} (I^+_j S^- + I^-_j S^+).$$

(4)

with the Fourier coefficients

$$b^0_{j} = 0, \quad b^1_{j} = \frac{1}{2} \sqrt{2} (d_{IS} + \pi J^{aniso}_{IS}) \sin(2\Theta_j) e^{\pm i \varphi_j},$$

$$b^2_{j} = \frac{1}{4} (d_{IS} + \pi J^{aniso}_{IS}) \sin^2(\Theta_j) e^{\pm 2i \varphi_j}.$$

The heteronuclear through-space dipolar coupling constant is given in units of angular frequency as $d_{IS} = -\mu_0 \gamma_1 \gamma_2 h |\mathbf{r}_{12}|$. In the zinc-blende structure of InP with a lattice constant of $a = 5.87$ Å at 300 K (Ref. 33) we extract $d_{IS}/2\pi = -637$ Hz for the nearest neighbor 113In31P pairs. J^{aniso}_{IS} denotes the principal value of the traceless anisotropic J-coupling tensor (pseudodipolar coupling). The polar angles Θ_j and φ_j describe the direction of the internucler vectors $\mathbf{r}_{IS,j}$ with respect to the MAS rotor-fixed coordinate system with its z axis along the spinning axis. For the InP single crystal sample-1 with the [100] crystal axis along the rotor axis $\Theta = \Theta = 54.74^\circ$ (local tetrahedral symmetry) and φ_j can be set to zero.

It should also be mentioned that in Eqs. (4) and (5) we have implicitly assumed that the 113In31P J-coupling tensor is axially symmetric with its principal axis parallel to the bond (collinear with the through-space dipole coupling tensor). This assumption is well supported by the threefold axis of symmetry along all nearest neighbor In-P bonds (space group $F\bar{4}3m$). We briefly summarize the two cases that lead to efficient cross polarization in InP:

(i) J cross polarization at the centerband Hartmann-Hahn condition $26,34,35$ $\omega_{IS} = \omega_{11} = \omega_{1}$. Here, $H_{IS,\theta}(\tau)$ can be neglected as nonsecular and Eq. (2) is simplified to

$$H_{J}^{c} = \omega_{1}(S_z + F_z) + \frac{\pi}{2} J^{aniso}_{IS} \sum_{j=1}^{4} (I^+_j S^- + I^-_j S^+).$$

(6)

113In31P MAS J cross polarization in InP is well described by the Hamiltonian of Eq. (6). A representative spectrum is shown in Fig. 2(a) and was discussed in Sec. A.

(ii) Cross polarization at the “sidebands” of the Hartmann-Hahn condition $\omega_{IS} - \omega_{11} = m \omega_r$ with $m = \pm 1, \pm 2$. In this case, the Hamiltonian of Eq. (2) can be approximated by $27,29$

$$\tilde{H}_{b,m} = (\omega_{11} - m \omega_r) S_z + \omega_{11} F_z + H_{IS,m},$$

(7)

with $\omega_{11} = 52.45 \text{ MHz}$ and $\omega_r = 10 \text{ kHz}$.

$$H_{IS,z1} = \frac{1}{2} \sqrt{2} (d_{IS} + \pi J^{aniso}_{IS})$$

$$\times \sum_{j=1}^{4} \sin(2\Theta_j) \frac{1}{2} (I^+_j S^- e^{\pm i \varphi_j} + I^-_j S^+ e^{\mp i \varphi_j}),$$

(8)

and

$$H_{IS,z2} = \frac{1}{2} (d_{IS} + \pi J^{aniso}_{IS})$$

$$\times \sum_{j=1}^{4} \sin^2(\Theta_j) \frac{1}{2} (I^+_j S^- e^{\mp 2i \varphi_j} + I^-_j S^+ e^{\pm 2i \varphi_j}).$$

(9)

In both cases (i) and (ii), the observed signal intensity of the 10-line multiplet can be calculated according to

$$(F_{z}(\tau_{cp})) = \text{Tr}[F_{z} e^{-i H_{IS}^{aniso} \tau_{cp}} S_{z} e^{i H_{IS}^{aniso} \tau_{cp}}],$$

(10)

where $\alpha = J$ or b,m. Analytical solutions of Eq. (10) can be found in the literature.34

A representative 31P spectrum obtained by an 113In$^{-31}$P cross-polarization experiment at the $+1$-sideband condition ($\tau_{cp} = 0.8 \text{ ms}, \omega_r/2\pi = 10 \text{ kHz}$, $\omega_{11} = \omega_{IS} - \omega_r$) is shown in Fig. 2(b). Here, the polarization transfer to the nearest neighbor 31P spins is exclusively driven by the “effective” dipolar coupling constant $b_{IS}^{eff} = d_{IS} + \pi J^{aniso}_{IS}$.

and provides the possibility to measure J^{aniso}_{IS} selectively. This is in contrast to the centerband cross-polarization condition, where the polarization transfer is mediated through J^{aniso}_{IS}. The observed multiplet in Fig. 2(b) (45% of the total signal intensity) indicates that $d_{IS} + \pi J^{aniso}_{IS} \neq 0$, and the assumption of a fortuitous cancellation of d_{IS} and πJ^{aniso}_{IS} (Ref. 11) is not confirmed. The much larger relative intensity of the central peak in Fig. 2(b) compared to the spectrum obtained under J cross-polarization conditions [Fig. 2(a)] indicates an efficient polarization transfer to more remote 31P spins at the $+1$-sideband cross-polarization matching condition.

The build up of the total signal intensity as a function of τ_{cp} is shown in Fig. 3(a) for the InP single crystal sample-1 ($\omega_r/2\pi = 10 \text{ kHz}$). The J cross-polarization transfer curve (circles) shows the well known transient oscillations36 characteristic of isolated spin systems ($I_3 S$ in the case of InP). The solid line represents a calculated curve based on Eqs. (6) and (11) with $|J^{aniso}_{IS}| = 225 \text{ Hz}$ and taking into account $T_{1p}(^{113}\text{In}) = 30 \text{ ms}$.37 The first maximum of the experimental transient oscillations was normalized to the predicted value. As expected, the experimental oscillations deviate for long contact times caused by residual rf inhomogeneities. However, the agreement between the calculation and the experimental curve is satisfactory.

On the other hand, the transfer curve at the +1-sideband matching condition (crosses) is characteristic for an open spin system due to the extended network of 31P nuclei, through-space dipole coupled to the dilute indium-113. Obviously, the Hamiltonian of Eqs. (8) and (9) cannot explain this transfer curve and the contribution from polarized re-
SCALAR AND ANISOTROPIC J INTERACTIONS IN . . .

FIG. 3. (a) Total intensity of the ^{31}P resonance ($^{115}\text{In}→^{31}\text{P}$ polarization transfer) in the InP single crystal sample-1 as a function of the contact time τ_{cp} under J cross-polarization conditions (circles) with $\omega_{1S}/2\pi = 28$ kHz and for the +1-sideband matching condition (crosses) with $(\omega_{1J} + \omega_{J})/2\pi = \omega_{1S}/2\pi = 38$ kHz. The thin line denotes the calculation with $|J_{ISO}| = 225$ Hz. Also shown are typical experimental MAS cross-polarization matching profiles for sample-1 at $\tau_{cp} = 0.3, 0.75$, and 1.5 ms. Here, the ^{31}P rf amplitude was fixed at 28 kHz and the ^{115}In amplitude was varied between 0 and 60 kHz. The width of the center and sidebands are equal for a given τ_{cp} and possibly caused by small residual rf inhomogeneities. (b) Buildup of the ^{31}P multiplet intensity ($^{115}\text{In}→^{31}\text{P}$ polarization transfer) in the InP single crystal sample-1 for $0 \leq \tau_{cp} \leq 1$ ms under J cross-polarization conditions (circles) with $\omega_{1S}/2\pi = 28$ kHz and for the +1-sideband matching condition (crosses) with $(\omega_{1J} + \omega_{J})/2\pi = \omega_{1S}/2\pi = 38$ kHz. The thin line denotes the theoretical prediction with $|J_{ISO}| = 225$ Hz (centerband) and a fit with $|b^{eff}|/2\pi = 230 \pm 25$ Hz (+1-sideband). The dashed lines denote the calculated buildup for $|b^{eff}|/2\pi = 255$ Hz and $|b^{eff}|/2\pi = 205$ Hz, respectively. Experimental data were acquired with a spinning speed of $\omega_{r} = 28$ kHz. A total of 256 transients with a delay of 3 s was acquired for each data point. The normalization of the experimental data is described in the text. The intensity scale is given in units of the equilibrium polarization of one ^{31}P spin.

C. Static orientation-dependent ^{31}P line shape

The values obtained for J_{ISO}^{aniso} suggest that a considerable anisotropy for the second moment of the ^{31}P resonance should be expected for a static single crystal sample. Since the result of $J_{ISO}^{aniso} = 1270$ Hz (Ref. 11) was mainly based on the lack of any modulation of M_2 as a function of the InP single crystal orientation with respect to B_0, we repeated the static measurements for three different sets of orientations. The static experiments additionally provide an independent comparison to the experiments performed under MAS. Rotation patterns were obtained for the single crystal sample-3 with three different rotation axes \mathbf{R}: (i) \mathbf{R} parallel to [100], (ii) \mathbf{R} parallel to [110], and in (iii) $\mathbf{R} = [100]$ = 45°. In all cases the rotation axis was perpendicular to B_0. All ^{31}P spectra were obtained by a cross polarization from the abundant ^{115}In spins with $\tau_{cp} = 1$ ms. No ^{115}In decoupling was applied during the acquisition time.

The dominant part of the Hamiltonian determining the second moment of the static ^{115}In-coupled ^{31}P line shape can be approximated as (in the doubly rotating frame)

$$H = H_{II,d} + H_{IS}^{near} + H_{IS}^{far}, \quad (12)$$

with

$$H_{II,d} = \sum_{j,k} d_{jk}^{II} P_{2} (\cos \vartheta_{jk}) (3 I_{J=0} I_{K=0} - I_{j} I_{k}), \quad (13)$$

$$H_{IS}^{near} = \sum_{j,k} \left[\pi J_{ISO} + \Theta^{eff} P_{2} (\cos \vartheta_{jk}) \right] 2 I_{j} I_{k} S_{j} S_{k}, \quad (14)$$

and

$$H_{IS}^{far} = \sum_{j,k} d_{jk}^{II} P_{2} (\cos \vartheta_{jk}) 2 I_{j} S_{k}, \quad (15)$$

where $P_{2}(\cos \vartheta)$ is the normalized second-order Legendre polynomial, and ϑ denotes the inclination angle of the internuclear vector with the external static magnetic field. Electron-coupled $^{31}\text{P}→^{31}\text{P}$ J interactions are neglected in Eqs. (12) and (13). Further, we have only included the J-coupling interactions between the nearest neighbor $^{115}\text{In}→^{31}\text{P}$ pairs in Eqs. (14) and (15). From Eqs. (12)–(15) we obtain the following expression for the second moment:

$$M_2 = M_2^{II,d} + M_2^{IS,near} + M_2^{IS,far}, \quad (16)$$

with the ^{31}P homonuclear through-space dipolar contribution

$$M_2^{II,d} = 3 I (I + 1) \sum_{k} \left[d_{jk}^{II} P_{2} (\cos \vartheta_{jk}) \right]^2, \quad (17)$$

and (10)] using the known orientation of the [100] crystal axis of sample-1 with respect to the static magnetic field ($\Theta = 54.74°$). Both curves (experimental and fit) are normalized with respect to the first maximum of the transient oscillations observed under J cross-polarization conditions [displayed in Fig. 3(b) for comparison]. From the least-squares fit we obtain $|b_{^{31}\text{P}}^{eff}/2\pi| = |d_{1S}/2\pi + J_{ISO}^{aniso}| = (230 \pm 25)$ Hz. This leads to the principal value of the nearest neighbor J-coupling tensor $J_{ISO}^{aniso} = (813 \pm 50)$ Hz or (1733 ± 50) Hz. 38
the nearest-neighbor $^{115}\text{In}^{31}\text{P}$ heteronuclear contribution

$$M_{2,\text{near}}^{15} = \frac{4}{3}S(S+1)(\pi J_{1s}^{\text{iso}})^2$$

$$+ \frac{16}{3}S(S+1)(\beta_{1s})^2 \sum_{j} P_{2}(\cos \theta_{jk})$$

$$+ \frac{16}{3}S(S+1)\beta_{1s} \pi J_{1s}^{\text{iso}} \sum_{j} P_{2}(\cos \theta_{jk}),$$

and the heteronuclear through-space dipolar contribution

$$M_{2,\text{far}}^{15} = \frac{4}{3}S(S+1) \sum_{j} d_{1s} P_{2}(\cos \theta_{jk})^2.$$ (18)

Note that, in principle, the last term of Eq. (18) provides the possibility to extract the relative sign of J_{1s}^{iso} and β_{1s}, and therefore, to uniquely determine J_{1s}^{iso}. However, in the InP zinc-blende structure with its local tetrahedral symmetry, $\Sigma P_{2}(\cos \theta_{jk}) = 0$, and the ‘‘cross term’’ between J_{1s}^{iso} and β_{1s} does not contribute to the total second moment.

Figure 4 shows the experimental rotation patterns of $\sqrt{M_2}$ for sample-3 and the three different single crystal orientations described above. Also included in Fig. 4 is a fit of $\sqrt{M_2}$ based on Eqs. (16)–(19) and using the known crystal structure of InP. The lattice sums involved in the calculation of M_2 [Eqs. (17) and (19)] were evaluated by adding the contributions from 64 unit cells. J_{1s}^{iso} was constrained within 225 ± 10 Hz and $|\beta_{1s}|$ left unconstrained for the simultaneous fit of the three rotation patterns. Considering the rather crude approximations made in Eqs. (12)–(19) for the evaluation of the theoretical second moment, the fit is satisfactory, and we obtain $|\beta_{1s}/2\pi| = (245 \pm 80)$ Hz, in agreement with the value obtained under MAS conditions.

IV. SUMMARY

The combination of cross polarization and rapid magic angle spinning has proved useful in the measurement of scalar and anisotropic J interactions in the InP semiconductor. We confirmed the assertion of Engelsberg and Norberg that the ^{31}P NMR linewidth in undoped InP is determined by the relative magnitude and sign of the nearest-neighbor heteronuclear anisotropic J coupling (pseudodipolar) and through-space dipolar coupling. 11 We obtain an independent set of experiments $|J_{1s}^{\text{iso}}(31\text{P},113,115\text{In})| = (225 \pm 10)$ Hz for the scalar and $|J_{1s}^{\text{iso}}(31\text{P},113,115\text{In})| = 2/3 |J_{1s}^{\text{iso}}(31\text{P},113,115\text{In})| = (813 \pm 50)$ Hz or (1733 ± 50) Hz for the pseudodipolar contribution, respectively. The relative sign of $J_{1s}^{\text{iso}}(31\text{P},113,115\text{In})$ and $|\beta_{1s}(31\text{P},113,115\text{In})|$ could not be determined in this study and results in an ambiguity in the anisotropic J coupling.

The large anisotropic $J(31\text{P},113,115\text{In})$ tensor emphasizes the importance of spin-spin coupling mechanisms other than the Fermi-contact mechanism in InP. In particular, the ratio $1/2 |J(31\text{P},113,115\text{In})| = 1.80$ (Refs. 11, 41) or 3.85 implies a predominantly p character of the In-P electronic wave function. The obtained values corroborate the interpretation of Engelsberg and Norberg that the large anisotropy of $J(31\text{P},113,115\text{In})$ is probably due to the proximity of the second lowest conduction band (p-like) and the first conduction band along [100] crystal directions. 10,42

It should also be mentioned that the smaller of the two possible values of $J(31\text{P},113,115\text{In})$ in InP coincides with the only other reliable measurement of an In-P pseudodipolar coupling constant. 15 In addition, the corresponding ratio for $|J(31\text{P},113,115\text{In})|$ is identical to the one estimated by Engelsberg and Norberg.

The experiments described above represent an initial application of double and triple resonance MAS NMR to the quantification of isotropic and anisotropic J couplings in a bulk III-V semiconductor. InP is a particularly well-suited material due to the low natural abundance of ^{115}In and the vanishing indium quadrupole coupling constant in a zinc-blende lattice. Similar experiments may also be useful in the study of electron-coupled nuclear spin interactions in II-VI semiconductors, semiconductor alloys, 43 or semiconductor nanocrystals. 45

ACKNOWLEDGMENTS

We thank Dr. G. C. Chingas for helpful discussions and R. H. Havlin for providing the single crystal sample used for

FIG. 4. Variation of $\sqrt{M_2}/2\pi$ of the static ^{31}P resonance as a function of the orientation of the InP single crystal sample-3 with respect to the external magnetic field: (i) R parallel to [100], (ii) R parallel to [110], (iii) $\angle(R,[100]) = 45^\circ$. All ^{31}P spectra were obtained by a cross polarization from the abundant ^{115}In spins with $\tau_p = 1$ ms $(\omega_{1s}/2\pi = \omega_{1s}/2\pi = 28$ kHz). The crystal rotation axis R was always perpendicular to B_0. The experimental values of M_2 were numerically calculated from the ^{31}P spectra (see caption of Fig. 1). A total of 64 transients with a delay of 2 s was acquired for each orientation. Symbols indicate the experimental data, while the lines denote the result of a simultaneous least-squares fit of the three rotation patterns with $|J_{1s}^{\text{iso}}|$ constrained within 225 ± 10 Hz and $|\beta_{1s}|$ left unconstrained. Note that the InP crystal orientation with the smallest modulation in the $\sqrt{M_2}/2\pi$ rotation pattern (i.e., $\angle(R,[100]) = 45^\circ$) is identical to the one investigated by Engelsberg and Norberg (Ref. 11).
the MAS experiments. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. J.L.Y. and M.P.A. thank the support of the National Science Foundation under Grant No. DGE-9714523 and Grant No. CHE-9504655, respectively. M.T. acknowledges support from the Swiss National Foundation of Science.

*Present address: Department of Chemistry, University of California, Davis, CA 95616.
30 The scalar indirect spin-spin coupling constant can be written as
$J_{1s}^{n1P}_{\alpha \beta} = \hbar/2 \pi \gamma_{1s}^{n1P} \gamma_{1s}^{n1P} K \langle \text{In}, \text{P} \rangle$, where $\alpha = 113,115$ and $K \langle \text{In}, \text{P} \rangle$ denotes the reduced coupling constant (Ref. 3), which depends on the electronic properties and the internuclear distance. Since $\gamma_{1s}^{n1P}/\gamma_{1s}^{n1P} = 0.9979$ isotope effects on $J_{1s}^{n1P}_{\alpha \beta}$ are small and within our experimental error.
37 The value $T_{1s}^{n1P}_{\alpha \beta} = 30 ms$ was measured separately under the same experimental conditions as in the cross-polarization experiments; $\omega_1/\pi = 10 kHz$ and $\omega_2/\pi = 28 kHz$. $T_{1s}^{n1P}_{\alpha \beta} > 80 ms$ for our experimental conditions and does not affect the polarization transfer curves.
38 Due to our definition of the through-space dipolar coupling constant as $d_{1s}^p = -\mu_0 \gamma_1 \gamma_p \hbar/4 \pi^3 \lambda$, the sign of J_{1s}^{n1P} is positive. This is in contrast to the convention used by Engelsberg and Norberg (Ref. 11).
40 The relative sign of J_{1s}^{n10} and $d_{1s}^{p, eff}$ is determined only in special cases. Examples are given by Wasylishen et al. (Ref. 15) or by A. Nolle, Z. Phys. B 34, 175 (1979).