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Radiation damping dynamics in both narrow line and homogenously broadened systems 
are well undestood.  Introduction of magnetic field inhomogeneity necessarily complicates 
the radiation damping problem, and consequently, a complete analytical description has 
not yet been demonstrated.  Initial work in this area led to a relationship between the initial 
tipping angle q0 of the on resonance central vector of a symmetric field distribution M(0,t) 
and the change in tipping angle |Dq| due to the combined torque of radiation damping and 
the inhomogeneous magnetic field.  The resulting area theorem generated from the Bloch 
equations using a transformation first realized in the treatment of self-induced 
transparency in optical systems can be written in terms of the radiation damping rate 1/TR 
= 2pM0Qgx and the inverse linewidth for a Lorentzian distribution T2

* as

                                                    |Dq| = (T2
*/TR)sin(q0 - |Dq|).

This angle change |Dq| also represents the area of the measured time domain signall 
following a q0 rf pulse.  Graphical solutions to this transcendental equation for q0 = p/2 and 
several choices of cn = T2

*/TR are shown on the top left.  The diagram shown on the top 
right describes the net effect of the rotation of M(0,t) from the v direction at t = 0 to the Mz 
direction at a time later when all of the effects of radiation damping have vanished.  
Extension of this analytical approach to two and many rf pulses yields a series of 
transcendental relations such as that shown above.  In the special case of two p rf pulses 
separated by a time long enough for radiation damping to vanish, one recovers the relation

                                          |Dq2| - |Dq1| = -(T2
*/TR)sin(|Dq2| - |Dq1|).

Graphical solutions to this equation are shown on the lower left for various choices of cn.  
Since intersection of the linear curve representing y = |Dq2| - |Dq1| with any of the curves y 
= -(T2

*/TR)sin(|Dq2| - |Dq1|) only ocurrs at the origin, |Dq2| = |Dq1|.  The consequences of 
this equality are shown beginning with the middle diagram on the right.  Following a p rf 
pulse M(0,t) at t = 0 is aligned along the -Mz direction as shown by the green arrow.  The 
combined effect of radiation damping and field inhomogeneity rotate M(0,t=0) toward the 
+Mz diretion by an angle |Dq1| as shown by the red arrow.  Application of a second p rf 
pulse transforms the red arrow into the green arrow shown in the diagram on the lower 
right.  Again radiation damping and the inhomogeneous field rotate this vector to the +Mz 
direction due to the equality |Dq2| = |Dq1|.  Although only appropriate for M(0,t), this 
theorem serves as a guide to the development of a three component echo.  Indeed both 

Although the analytical theorem is only appropriate for describing total rotation angles 
|Dqn| for M(0,t) from t = 0 until times when the reaction field due to all of the isochromats 
is averaged to zero, the idea of three component refocusing predicted by this theorem 
can be used as an indirect detector.  The diagram on the left is appropriate for a 
symmetric Lorentzian distribution having T2

*/TR = 5.0.  An initial p rf pulse inverts all of 
the isochromatic vectors, designated by a blue spot at the south pole of the sphere shown 
on the top left.  After 57 ms, the vectors have fanned out in three dimensions shown on 
the bottom left sphere.  For this particular choice of T2

*/TR, 57 ms corresponds to the 
maximum integrated transverse magnetization or signal.  Application of a second p pulse 
transforms this distribution into the sphere shown on the bottom right.  As time proceeds 

Continued application of this double p pulse train will cycle through these four spheres 
and the corresponding signal will decay according to a rate that is a function of T1 and T2.  
Clearly any departure from a symmetric distribution will alter the complete refocusing of 
the magnetization along +Mz and be manifest in a change of the echo envelope.  An 
example of such a sequence is shown above.  Here one examines the decay of the 
double p echo train with and with out any preparation pulses.  The preparation pulses 
could be any double resonance experiment that perturbs the 1H spectrum of a soulte 
while leaving the solvent unaffected.  To test this idea a sample of H2O was chosen and 
the preparation period consisted of a hole burning experiment.  The results shown on the 
right are appropriate for a symmetric Lorentzian distribution with a slight notch burned 
into one side, as shown in the images on the top right.  The double p echo train in red 
was acquired without hole burning and a plot of these echo maxima is shown on the 
lower right.  Upon hole burning, the decay rate clearly increases, reflecting the ~1.5% 

57 ms

T2*/TR = 5.0
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Discussion of the time necessary for inverted magnetization M(t=0) = - Mz to swing 
through the u-v plane and settle along the +Mz direction begins with the Bloch equations 
for a single isochromat under conditions of radiation damping.

Here M0 is the total magnetization, and the potentially time dependent Dw, w1, and w2 are 
the frequency offset, and the real, and imaginary components of an rf field.  Notice that 
when M(t=0) = - Mz and for w1 = w2 = 0, these equations predict that M(t) will remain 
along the -Mz direction indefinitely.  However, thermal noise in the rf circuit generates an 
incoherent rf field with components w1 and w2 near the Larmor frequency.  It is this noise 
field that triggers formation of the usual super-radiant burst observed in concentrated 
samples following a perfect p pulse.  To analyze this problem and calculate the time of the 
burst maximum tmax consider first the time behavior of the stereographic projection of 
M(t), G = v+iu/(1+Mz).  Using the Bloch equations above one finds that G evolves 
according to the Ricatti equation.

This equation is the key to an exact linearization of the Bloch equations under conditions 
of radiation damping.  Now consider the evolutions of a two level spinor with amplitudes y 1 
and y 2 under a complex rf field and corrected for radiation damping by forcing y 1 to grow 
and y 2 to decay at the rate 1/2TR.  

Interestingly enough by defining g = y 2/y 1 and calculating the time behavior using the 
above matrix differential equation one recovers the Ricatti equation.

Again thermal noise in the circuit causes incoherent fluctuations in the rf field experienced 
by the magnetization.  Modelling these changes in w1 and w2 with the same "discretized" 
white noise mentioned above now provides non-zero values for <y 1y 1*> and <y 2y 2*>.  In 
terms of the time step weighted variance (s2/Dt)Dt, the time evolution of these components 
is given by:

The numerical average of <y 1y 1*> and <y 2y 2*> over 1000 particles is shown graphically 
as thick lines in the top left graph for TR = 2 ms, s2 = 0.5 rad2/ms2, and Dw = 0.5 rad/ms.  
An analytical solution based on the above matrix equation yields curves essentially 
identical to those shown on the figure.  The residuals between numerical computation of 
<y 1y 1*> and <y 2y 2*> and the approximation are also included in this diagram to 
demonstrate the accuracy of this analytical model.  Comparison of the intersection point of 
these two curves with single particle values for y 1 indicates that this particular time 
describes the average burst time tmax.  Equating the analytical solutions deduced from the 
above matrix equation yields the startup time as

It is interesting to ask how much coherent rf field is necessary to dominate and shorten 
tmax to determine whether or not a trigger based detection strategy is possible.  
Proceeding in exactly the same way as above in the determination of <y 1y 1*> and 
<y 2y 2*> leads to the relation
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The similarity in the time behavior of g and G imply that the linear transformation of y 1(0) 
and y 2(0) into y 1(t) and y 2(t) via the 2x2 matrix on the left is equivalent to solving the 
nonlinear Bloch equations.  Indeed one can predict u, v, and Mz at any time in terms of y 1 
and y 2 via the ratio G = g = y 2/y 1 as u + iv = 2G/(1+GG*) and Mz = (1-GG*)/(1+GG*).  At t = 
0 after a p rf pulse M(t=0) = -Mz, G = ¥ , and one can take y 2 = 1 and y 1 = 0.  In terms of a 
stochastic white noise excitation for w1 and w2 that is "discretized" by choosing a value at 
each time interval from a normal distribution with variance s2/Dt the ensemble average 
<y 1> = 0 at all times for these initial conditions.  This is consistent with experiment as both 
the burst time and phase are random producing zero average signal.  Consider instead the 
evolution of the "density" y ny m* (where n,m = 1 or 2) by a matrix L derived from the 2x2 
matrix on the left and its Hermitian conjugate.  Note the similarity between the matrix 
elements of L and those one would expect on the basis of assigning y 1 and y 2 as |+> and 
|-> spin states.  The presence of radiation damping is represented by gain and decay 
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