αGal-conjugated anti-rhinovirus agents: chemo-enzymatic syntheses and testing of anti-Gal binding

Yongsheng Chen, Wei Zhang, Xi Chen, Jianqiang Wang and Peng George Wang *

Department of Chemistry, Wayne State University, Detroit, MI 48202, USA

Received (in Cambridge, UK) 8th January 2001, Accepted 24th May 2001
First published as an Advance Article on the web 25th June 2001

The syntheses of αGal-conjugated anti-rhinovirus agents 1, 2 and 3 and their abilities to inhibit αGal binding of human anti-Gal antibody are described. An efficient enzymatic glycosylation using a novel fusion protein serves to provide the key αGal intermediate 7, which is elaborated to αGal amines 9, 12 and 14 with various tethers. The conjugates are then formed by amide coupling of these amines to heterocyclic acid 18 in the presence of 1,1'-carbonyldiimidazole (CDI), followed by deprotection of the αGal part. Conjugate 3 having a triethylene glycol linker displays the highest binding affinity to human anti-Gal antibody as tested by ELISA.

Introduction

Human rhinovirus is a major cause of common colds, which result in worldwide morbidity and economic loss. Earlier attempts to develop a cross-protective vaccine have completely failed due to the diversity of rhinovirus serotypes (more than 100 identified). Therefore, efforts have been focused on the development of antiviral agents that can prevent the rhinovirus infection. The virion of rhinovirus consists of a non-enveloped capsid (a protein shell with some 'deep canyons') that surrounds a linear segment of a single-stranded RNA molecule. Current anti-rhinovirus agents, as represented by R 61837, WIN series, and SDZ series (Fig. 1), are categorised as capsid-binding molecules that exert their inhibitory effect by inserting themselves into the hydrophobic pocket of the virus and preventing the release of viral RNA. Although many structural modifications have been made to maximize their potency, these capsid-binding compounds are only effective in preventing the viral infection. In fact, none of the rhinovirus inhibitors have been found useful when given after symptoms of colds had started. Moreover, the sole dependence on certain antiviral agents to treat a virus infection will inevitably increase the possibility for the virus to develop resistance against the drugs.

As recently identified, the interaction between human anti-Gal antibody and αGal epitopes (carbohydrate structures bearing a Galα1-3Galβ terminus) is the mechanism responsible for the hyperacute rejection in xenotransplantation. Trisaccharides Galα1-3Galβ1-4Glcβ-R (A), Galα1-3Galβ1-4GlcNAcβ-R (B), and pentasaccharide Galα1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-R (C) (Fig. 2) are the major αGal epitopes that are abundantly expressed on the cells of most mammals with the exception of humans, apes, and other Old World primates. Conversely, anti-Gal antibody, which interacts specifically with αGal epitopes, is the most abundant natural polyclonal antibody (including IgG, IgM and IgA) in humans. In hyperacute rejection, anti-Gal IgG binds to αGal epitopes on the xenograft cells and results in antibody-dependent cell-mediated cytotoxicity by human blood monocytes and macrophages. The IgM isotype of anti-Gal then fixes the complement and leads to complement-mediated lysis of the xenograft cells. Indeed, this immunological rejection by the human body is so strong that pig organs transplanted into humans were hyperacutely rejected within minutes.

It is our hypothesis that anti-Gal-mediated human natural immune defense can be incorporated into the current antiviral strategy against rhinovirus (Fig. 3). By covalently attaching the αGal epitope to the capsid-binding molecules through appropriate linkers, a new generation of αGal-conjugated antiviral agents may be developed for more effective treatment.

Fig. 1 Representative capsid-binding molecules and the binding of WIN 52035 in the pocket of HRV-14 with amino acid residues lining the wall.
common colds. We envisage that the conjugate, once bound to the virus, will coat the virus with αGal epitopes, which will then induce an anti-Gal-mediated immune response and result in the killing of the virus. Herein, we report the chemo-enzymatic synthesis of a series of such αGal-conjugated antiviral agents and their binding affinities to anti-Gal antibody.

Results and discussion

To allow for maximum retained binding ability of both parts in the conjugate, we have considered carefully the selection of all the building blocks, including the αGal epitope, the inhibitor, and the linker. For the αGal part, a type-A epitope (see Fig. 2) with an anomeric azide was chosen because of the ease of preparation and connection with linkers, as well as its strong binding to anti-Gal antibody. An oxadiazole WIN analogue (see Fig. 1), which is assumed to be more hydrolytically stable with comparable antiviral activity, was chosen as the inhibitor molecule. In order for the conjugate to be able to bind both anti-Gal antibody and the virus, it has to possess an appropriate linker between the two parts. This linker, with suitable length, flexibility and hydrophobicity, should then allow for the proper spatial arrangement of the conjugate so that both the αGal and the inhibitor can bind well.

Synthesis of the key αGal intermediate 7 and elaboration to αGal amines 9, 12 and 14

Although we have recently reported an efficient, large-scale chemical synthesis of a protected αGal trisaccharide derivative, it still suffers from prerequisite protecting-group manipulations on the glycosyl acceptor. The enzymatic galactosylation method was then pursued, which served as a key step in the synthesis of the αGal intermediate 7, as illustrated in Scheme 1.

Scheme 1

Per-acetylated lactosyl azide was hydrogenated to give the primary amine, which was immediately treated with 6-bromo-hexanoyl chloride to afford 4. Nucleophilic substitution of 4 with sodium azide in DMF afforded 5, and subsequent deacetylation of 5 by sodium methoxide provided 6. Compound 6 was subjected to enzymatic glycosylation with UDP-glucose (UDP = uridine 5′-diphosphate) as the donor and a fusion enzyme (GalE-GalT) as the catalyst. Recently constructed in our laboratory, this enzyme has the dual functions of both UDP-Gal 4-epimerase (GalE) and α(1→3)-galactosyltransferase (GalT). As a result, it utilizes the relatively cheap glycosyl donor UDP-Glc in place of the expensive UDP-Gal. A gram-scale enzymatic glycosylation of 6 (0.96 g) was carried out, providing αGal trisaccharide 7 in 67% yield after purification by size-exclusion chromatography. Compound 7 was then per-acetylated to give 8, and the azido group was reduced by catalytic hydrogenation to afford 9.

To provide different linkers in the conjugate, compound 9 was elaborated to the other two αGal amines 12 and 14 according to Scheme 2. Prepared from 9 through a similar reaction sequence of acylation, substitution, and hydrogenation, compound 12 doubles the linker length by incorporating another 6-aminohexanoyl unit. A triethylene glycol spacer was introduced into compound 14 via a carbamate linkage using 1,1′-carbonyldimidazole (CDI) as the coupling agent. Thus,
activation of triethylene glycol monoaizide with CDI yielded the active intermediate, which then reacted with freshly made 9† to give compound 13. Hydrogenation of 13 then afforded the desired amine 14.

Synthesis of the inhibitor and final couplings

The synthesis of the capsid-binding molecule is outlined in Scheme 3.12 Reaction of 4-cyanophenol with 5-chloropent-1-

yne gave nitrile 15. Treatment of 15 with hydroxylamine yielded the intermediate amidoxime, which was acylated with acetyl chloride to give oxadiazole 16. The desired isoxazole 17 was then obtained from a [3 + 2] cycloaddition reaction of 16 and the nitrile oxide derived from ethyl chlorooximidoacetate [ethyl chloro(hydroxyimino)acetate] and triethylamine. Subsequent basic hydrolysis of 17 afforded 18 with a terminal carboxylic acid ready to link to the αGal part.

The couplings of 18 with αGal amines 9, 12 and 14 were again accomplished using CDI, which proved very effective and consistent for this system (Scheme 4). Thus, activation of 18 with CDI followed by addition of freshly made 9 (or 12, 14)

† All the amines (9, 12, and 14) with a per-acetylated αGal were prepared right before the coupling reaction to minimize the possibility of transterification to the amino functionality.

Experimental

General

1H and 13C NMR spectra were recorded on 400 MHz Varian VXR-400 and 500 MHz Varian Unity NMR spectrometers. Mass spectra were run at the mass spectrometry facility at Wayne State University. Baker silica gel (40 µm) was used for column chromatography, and E. Merck precoated TLC plates for TLC.

References
A solution of per-acetylated β-D-lactosyl azide 1 (5.0 g, 7.6 mmol) in methanol (80 ml) was hydrogenated for 1.5 h at rt and 50 psi in the presence of Pd/C (0.6 g). The mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo, redissolved in dry CH₂Cl₂, and the solution was cooled to 0 °C. Diisopropylethylamine (3.9 ml, 22.8 mmol) and 6-bromohexanoyl chloride (2.3 ml, 15.2 mmol) were sequentially added, and the mixture was warmed to rt and stirred for 1 h. After concentration, the residue was dissolved in ethyl acetate, washed successively with dil. HCl, saturated aq. NaHCO₃, and concentrated. The concentrated residue was purified by flash chromatography (ethyl acetate – hexanes 3 : 2) to give the title compound 4 (4.4 g, 72% over two steps) as a crystalline solid; δₓ(400 MHz; CDCl₃) 6.19 (d, J = 9.2 Hz, 1H), 5.31 (d, J = 2.8 Hz, 1H), 5.25 (t, J = 8.8 Hz, 1H), 5.16 (t, J = 9.4 Hz, 1H), 5.06 (dd, J = 10.4, 8.0 Hz, 1H), 4.90 (dd, J = 10.2, 3.4 Hz, 1H), 4.77 (t, J = 9.8 Hz, 1H), 4.42 (d, J = 8.0 Hz, 1H), 4.38 (m, 1H), 4.10 (m, 2H), 4.02 (dd, J = 11.2, 7.6 Hz, 1H), 3.84 (t, J = 7.0 Hz, 1H), 3.72 (m, 2H), 3.35 (t, J = 7.0 Hz, 2H), 2.15 (m, 2H), 2.11 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00(3) (s, 3H), 2.00(0) (s, 3H), 1.92 (s, 3H), 1.81 (m, 2H), 1.57 (m, 2H), 1.39 (m, 2H); δₓ(100 MHz; CDCl₃) 173.0, 171.5, 170.6, 170.5, 170.4, 170.3, 169.5, 169.2, 101.1, 78.1, 76.2, 74.6, 72.6, 71.1(6), 71.1(4), 70.8, 69.2, 66.8, 62.2, 61.0, 51.3, 36.4, 28.7, 26.3, 24.7, 21.1, 21.0, 20.9, 20.8(4) (m), 20.8(0), 20.7; m/z (FAB MS) 775 (M⁺ + H). C₁₂H₂₄N₂O₁₄ requires m/z: 775.29; 813 (M⁺ + K). C₁₂H₂₄N₂O₁₄K requires m/z: 813.24.

6-Azido-N-[O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranosyl]hexanamide 6

To a solution of 5 (4.0 g, 5.2 mmol) in absolute methanol (200 ml) was added sodium methoxide to adjust pH to 9. The mixture was stirred at rt for 4 h and then neutralized with Dowex 50WX2-100 (H⁺) resin. The resin was filtered off, and the filtrate was concentrated to give the title compound 6 (2.4 g, 97%) as a white solid; δₓ(500 MHz; D₂O) 4.81 (d, J = 9.0 Hz, 1H), 4.29 (d, J = 7.5 Hz, 1H), 3.76 (m, 2H), 3.65–3.49 (m, 8H), 3.39 (t, J = 8.5 Hz, 1H), 3.27 (m, 1H), 3.16 (t, J = 6.5 Hz, 2H), 2.18 (t, J = 7.0 Hz, 2H), 1.47 (m, 4H), 1.24 (m, 2H); δ₂(125 MHz; D₂O) 178.4, 103.0, 79.2, 77.9, 76.5, 75.5, 75.3, 72.6, 71.6, 71.1, 68.7, 61.2, 60.0, 51.1, 35.7, 27.8, 25.6, 24.7; m/z (FAB MS)
To a mixture of 6 (0.96 g, 2.0 mmol), UDP-Glc (1.22 g, 2.0 mmol), bovine serum albumin (BSA) (0.1%), and MnCl₂ (10 mM) in Tris-HCl (100 mM, pH = 7.0; 40 ml) was added enzyme GaLa-GaLT (10 U). The reaction mixture was shaken gently for 3 days at rt and then passed through a chloride-anion-exchange column (Dowex-CI). The eluate was concentrated, and purified by gel-permeation chromatography on Bio-Gel P2 with doubly distilled water to give the title compound 7 (0.86 g, 67%) as a white solid; δ (500 MHz; CDCl₃) 4.97 (d, J = 3.5 Hz, 1H), 4.81 (d, J = 9.5 Hz, 1H), 4.36 (d, J = 8.0 Hz, 1H), 4.04–4.00 (m, 2H), 3.34 (m, 1H), 3.39–3.5 (m, 2H), 3.70–3.48 (m, 12H), 3.26 (t, J = 8.8 Hz, 1H), 3.15 (t, J = 6.8 Hz, 2H), 2.17 (t, J = 7.5 Hz, 2H), 1.46 (m, 4H), 1.23 (m, 2H); δ (125 MHz; D₂O) 178.5, 102.9, 95.5, 79.2, 78.1, 77.3, 75.3, 73.2, 71.5, 70.9, 69.7, 69.4, 68.3, 64.9, 63.9, 61.1, 60.1, 60.0, 51.1, 35.7, 27.8, 25.5, 24.7; m/z (FAB MS) 643 (M⁺ + H). The concentrated filtrate was diluted with water and brine, and dried (Na₂SO₄), and concentrated. Flash chromatography of the residue with ethyl acetate–hexanes 1 : 6 provided the title compound 16 (0.44 g, 45%) as a yellow oil which solidified upon storage; δ (500 MHz; CDCl₃) 7.98 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 4.12 (t, J = 6.0 Hz, 2H), 2.63 (s, 3H), 2.42 (td, J = 7.0, 2.5 Hz, 2H), 2.03 (p, J = 6.6 Hz, 2H), 1.99 (t, J = 2.8 Hz, 1H); δ (125 MHz; CDCl₃) 171.9, 168.8, 161.9, 129.6, 120.0, 115.4, 84.0, 69.7, 66.9, 28.7, 15.8, 13.1; m/z (HREIMS) 242.1052 (M⁺). C₁₀H₁₂N₂O₄ requires M, 242.1055.

5-Methyl-3-[4-(pent-4-yn-3-yl)phenyl]-1,2,4-oxadiazole-3-carboxylic acid

A solution of 17 (2.0 g, 8.26 mmol) in dry DMF (10 ml) was added dropwise over a period of 20 min to a solution of ethyl chloroformidoacetate (3.75 g, 24.8 mmol) in DMF (25 ml). After being stirred at rt for 30 min, the solution was heated at 85 °C and a solution of TEA (3.45 ml, 24.8 mmol) in DMF (15 ml) was added dropwise over a period of 30 min. After an additional hour, the solution was cooled to rt, diluted with water, and extracted three times with ethyl acetate. The concentrated residue was purified by flash chromatography with ethyl acetate–hexanes 1 : 3 to afford the title compound 17 (1.83 g, 62%) as a white solid; δ (400 MHz; CDCl₃) 7.98 (d, J = 9.2 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 6.46 (s, 1H), 4.43 (q, J = 6.9 Hz, 2H), 2.07 (t, J = 6.2 Hz, 2H), 2.05 (t, J = 7.6 Hz, 2H), 2.65 (s, 2H), 2.24 (m, 2H), 1.41 (t, J = 7.2 Hz, 3H); δ (100 MHz; CDCl₃) 176.5, 174.6, 168.2, 161.1, 160.3, 156.7, 129.2, 119.8, 114.9, 102.1, 66.5, 62.3, 27.3, 23.7, 14.4, 12.6; m/z (HREIMS) 357.1325 (M⁺). C₁₀H₁₂N₂O₄ requires M, 357.1325.

5-Methyl-3-[4-(Methyl-1,2,4-oxadiazol-3-yl)phenyl]propyl-isoazole-3-carboxylic acid

A solution of 17 (145 mg, 0.41 mmol) and NaOH (20 mg, 0.5 mmol) in ethanol–water (1 : 1; 20 ml) was refluxed for 1 h, cooled to rt, and the ethanol was removed in vacuo. The aqueous solution was washed with diethyl ether, and AcOH was added. The chilled mixture was filtered, and the solids obtained were washed with water and dried (Na₂SO₄ in vacuo to give the title compound 18 (128 mg, 96%) as a white solid; δ (400 MHz; CDCl₃) 7.99 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.52 (s, 1H), 4.09 (t, J = 5.8 Hz, 2H), 3.08 (t, J = 7.5 Hz, 2H), 2.66 (s, 3H), 2.26 (m, 2H); δ (125 MHz; CDCl₃) 177.2, 175.6, 168.6, 162.8, 161.6, 156.7, 129.7, 120.1, 115.4, 102.8, 67.0, 27.7, 24.2, 13.1.

General procedure for catalytic hydrogenation for the preparation of amines 9, 12, and 14

A solution of the azido compound in methanol was hydrogenated for 1 h at rt and 50 psi in the presence of Pd/C (15 wt%). The mixture was filtered through Celite, and the filtrate was concentrated to give the amine, which was immediately used in the coupling reaction that follows.

General procedure for CDI-promoted coupling reactions for the synthesis of compounds 13, 19–21

A solution of the alcohol or the acid (2.2 eq.) and CDI (2.4 eq.)
in THF was refluxed for 2 h. After the solution had cooled to rt, freshly made amine (1.0 eq.) was added and reflux was resumed for 22 h. The solution was cooled to rt and concentrated in vacuo. The yellow residue was partitioned between water and ethyl acetate; the organic phase was dried (Na2SO4) and concentrated. Flash chromatography of the residue with CH2Cl2-MeOH 3:1 afforded the product.

Compound 13

From triethylene glycol monoazide (40 mg, 0.22 mmol), CDI (40 mg, 0.24 mmol), THF (10 ml), and 9 (freshly prepared from 106 mg, 0.1 mmol of 8) was obtained compound 13 (82 mg, 66%) as a white solid; δ400 MHz (CDCl3) 6.17 (d, J = 9.0 Hz, 1H), 5.43 (d, J = 2.0 Hz, 1H), 5.32–5.21 (m, 4H), 5.19 (t, J = 9.2 Hz, 1H), 5.14 (dd, J = 10.8, 3.2 Hz, 1H), 4.84 (m, 1H), 4.80 (t, J = 9.5 Hz, 1H), 4.39–4.36 (m, 2H), 4.20–4.00 (m, 8H), 3.82–3.60 (m, 14H), 3.38 (t, J = 5.0 Hz, 2H), 3.13 (q, J = 6.5 Hz, 2H), 2.14 (s, 3H), 2.12 (s, 6H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.04, 2.03 (s, 3H), 2.02 (s, 3H), 1.93 (s, 3H), 1.58 (m, 2H), 1.47 (m, 2H), 1.29 (m, 2H), δ100 MHz (CDCl3) 173.2, 171.5, 170.6, 170.5 (m), 170.4 (m), 170.1, 170.0, 169.5, 168.8, 156.7, 150.1, 93.7, 78.2, 75.9, 74.7, 73.2, 72.5, 71.2, 70.0, 70.2, 70.0, 69.3, 69.9, 67.9, 67.4, 67.0, 66.9, 64.0, 62.1, 61.4, 61.3, 50.9, 40.9, 36.6, 29.8, 26.3, 24.8, 21.1, 20.9 (m), 20.8 (m)(4) (s, 3H), 20.7(8), 20.7(1); m/z (FAB MS) 1238 (M+ + H, C21H34N2O6 requires m/z, 1238.46); 1276 (M+ + K, C21H34N2O6, K requires m/z, 1276.41).

Per-acetylated αGal conjugate 19

From 18 (74 mg, 0.22 mmol), CDI (40 mg, 0.24 mmol), THF (10 ml) and 9 (freshly prepared from 106 mg, 0.1 mmol of 8) was obtained compound 19 (63 mg, 47%) as a white solid: δ400 MHz (CDCl3) 7.98 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 6.84 (t, J = 5.8 Hz, 1H), 6.49 (s, 1H), 6.16 (d, J = 9.0 Hz, 1H), 5.44 (m, 1H), 5.32–5.23 (m, 4H), 5.20 (t, J = 9.8 Hz, 1H), 5.15 (dd, J = 10.2, 8.2 Hz, 1H), 5.09 (dd, J = 10.8, 3.2 Hz, 1H), 4.81 (t, J = 9.5 Hz, 1H), 4.39–4.36 (m, 2H), 4.19–4.01 (m, 10H), 3.82–3.62 (m, 16H), 3.13 (q, J = 6.7 Hz, 2H), 3.03 (t, J = 7.8 Hz, 2H, 2.63 (s, 3H), 2.22 (m, 2H), 2.15 (s, 3H), 2.12 (s, 6H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 20.7(8), 20.7(1); m/z (FAB MS) 1238 (M+ + H, C21H34N2O6 requires m/z, 1238.46); 1276 (M+ + K, C21H34N2O6, K requires m/z, 1276.41).

αGal conjugate 1

To a solution of 19 (63 mg, 0.047 mmol) in absolute methanol (20 ml) at 0 °C was added sodium methoxide to adjust pH to 9. The mixture was stirred for 6 h and then neutralized with Dowex 50WX2-100 (H+) resin. The resin was filtered off, and the filtrate was concentrated. Crystallization of the resultant residue from boiling water afforded compound 1 (32 mg, 74%) as a white solid; δ400 MHz (CDCl3-CN–D O 1:1) 8.22 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 9.0 Hz, 2H), 6.81 (s, 1H), 5.35 (d, J = 4.0 Hz, 1H), 5.18 (d, J = 9.0 Hz, 1H), 4.73 (d, J = 7.5 Hz, 1H), 4.43–4.37 (m, 4H), 4.22–4.20 (m, 1H), 4.16–4.12 (m, 2H), 4.08–3.85 (m, 11H), 3.66–3.58 (m, 4H), 3.31 (t, J = 7.8 Hz, 2H), 2.91 (s, 3H), 2.55 (t, J = 7.2 Hz, 2H, 2.49 (p, J = 2.4 Hz, CH3CN), 1.88 (m, 4H), 1.64 (m, 2H); m/z (FAB MS) 950 (M+ + Na, C21H33N2O6Na requires m/z, 950.35).

αGal conjugate 2

To a solution of 20 (65 mg, 0.045 mmol) in absolute methanol (20 ml) at 0 °C was added sodium methoxide to adjust pH to 9. The mixture was stirred for 6 h and then neutralized with Dowex 50WX2-100 (H+) resin. The resin was filtered off, and the filtrate was concentrated. Crystallization of the resultant residue from boiling water afforded compound 2 (34 mg, 73%) as a slightly yellowish solid; δ400 MHz (CDCl3-CN–D O 1:1) 8.18 (d, J = 9.0 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.78 (s, 1H), 5.32 (d, J = 3.5 Hz, 1H), 5.15 (d, J = 10.0 Hz, 1H), 4.70 (d, J = 7.5 Hz, 1H), 4.40–4.33 (m, 4H), 4.19 (m, 1H), 4.13–4.09 (m, 2H), 4.06–3.82 (m, 11H), 3.63–3.57 (m, 4H), 3.35 (t, J = 7.0 Hz, 2H), 2.92 (s, 3H), 2.50 (t, J = 7.2 Hz, 2H), 2.04 (s, J = 6.5 Hz, 2H), 2.62 (m, J = 7.8 Hz, 2H), 2.57 (m, 2H); m/z (FAB MS) 1041 (M+ + H, C21H34N2O6Na requires m/z, 1041.45); 1063 (M+ + Na, C21H34N2O6Na requires m/z, 1063.43); 1079 (M+ + K, C21H34N2O6, K requires m/z, 1079.41).

1721
αGal conjugate

To a solution of 21 (66 mg, 0.043 mmol) in absolute methanol (20 ml) at 0°C was added sodium methoxide to adjust pH to 9. The mixture was stirred for 6 h and then neutralized with Dowex 50WX2-100 (H+)-resin. The resin was filtered off, and the filtrate was concentrated. The resultant residue was purified with gel-permeation chromatography (Sephadex G10) to afford compound 3 (36 mg, 75%) as a white solid; δ3(500 MHz; CDCl3/N2/D2O 1 : 9) 7.91 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 6.55 (s, 1H), 5.10 (s, 1H), 4.93 (d, J = 9.0 Hz, 1H), 4.48 (d, J = 7.5 Hz, 1H), 4.15–4.10 (m, 6H), 3.98–3.56 (m, 27H), 3.39 (m, 1H), 3.04 (q, J = 7.0 Hz, 4H), 2.65 (s, 3H), 2.26 (m, 2H), 1.56 (m, 2H), 1.43 (m, 2H), 1.28 (m, 2H); m/z (FAB MS) 1125.43 (M+ + Na. C44H35N3O32Na requires m/z, 1125.4339); 1141.41 (M+ + K. C46H37N3O32K requires m/z, 1141.4079).

Inhibition ELISA

An ELISA (enzyme-linked immunosorbent assay) was conducted using mouse laminin, a basement membrane glycoprotein containing 50–70 αGal epitopes per molecule, as the solid-phase antigen. Purified human (male, blood type AB) polyclonal anti-Gal antibody (32 µg ml–1) or human sera (4-fold dilution) was first incubated with varying concentrations of αGal compounds for 3 h at room temperature. An aliquot (50 µL) of the mixture was then added to each microtitre plate well precoated with mouse laminin (50 µL well–1 of 10 µg ml–1 in 0.05 M Na2CO3–NaHCO3 buffer, pH = 9.5). After incubation for 1.5 h at room temperature, unbound antibodies were washed out with PBS–TWEEN buffer (pH = 7.4, 0.05% Tween, 5 × 200 µL well–1). A secondary antibody (1 : 1000 peroxidase-conjugated goat anti-human IgG, 50 µL well–1) was introduced, and the incubation was allowed to proceed for 1 h at room temperature. After washing of the mixture with PBS–TWEEN buffer (5 × 200 µL well–1), standard substrate (3,3’,5,5’-tetramethylbenzidine–H2O2; 9 : 1, 100 µL well–1) was added. The enzymatic oxidation reaction produced a blue stain in each well. The staining was quenched by adding 4% (v/v) sulfuric acid. Readings of optical absorption were taken at 450 nm (Bio-Rad Microplate Reader, model 1450-UV). PBS with secondary antibody was used as a background control, and purified anti-Gal or human sera with secondary antibody as the maximum staining (i.e., 0% inhibition). The % inhibition at each concentration was calculated as follows: (M – S)/(M – B) × 100% inhibition, where M was the OD450 reading of the maximum staining (mouse laminin + purified anti-Gal or human sera + 2nd Ab), S was the OD450 reading of the sample staining (mouse laminin + αGal conjugate + purified anti-Gal or human sera + 2nd Ab), and B was the OD450 reading of the background staining (mouse laminin + 2nd Ab).

Acknowledgements

Financial support from NIH (AI 44040) for our research program is gratefully acknowledged.

References