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The ability to probe specific chemical sites in complex systems
would make X-ray spectroscopy a far more versatile spectroscopic
tool. In vibrational and magnetic resonance spectroscopies,
isotopic substitution is commonly employed to allow characteriza-
tion of particular species. Except in a few special cases, such as
gas-phase spectra of light elements, isotope effects are too small
to be observed in X-ray absorption spectra. An alternative
approach is to examine the X-ray emission that results after
electron capture by a radioactive isotope.1,2 Controlled introduction
of electron-capture isotopes could result in specific labeling of
chemically distinct sites. In this paper, we show that high-
resolution electron capture fluorescence spectra can be obtained
on a reasonable time scale. Chemical shifts in these spectra can
be used to identify elemental spin states, oxidation states, and
even the types of neighboring atoms.

In the electron-capture process an inner shell electron reacts
with a nuclear proton to yield a neutron and a neutrino1

For an element with atomic numberZ, the 1s vacancy that is
produced by K-capture is similar to that created in K-edge X-ray
absorption, except that the nucleus now has chargeZ - 1. Just
as with X-ray excited emission, the core hole is subsequently filled
by a higher level electron, and the extra energy is released by
emission of an Auger electron or X-ray fluorescence. KR X-ray
fluorescence results from 2pf 1s transitions, while Kâ X-ray
fluorescence results when the 1s core hole is filled from orbitals
with 3p or 4p character.

Kâ X-ray fluorescence is often split by a 3p-3d exchange
interaction into a strong Kâ1,3 region and a weaker Kâ′ satellite.3

Chemical shifts in Mn Kâ1,3 lines4 have been used to record site-
selective EXAFS of different Mn oxidation states in mixed
valence complexes5 and to identify the mixtures of Mn oxidation
states in photosystem II.6 The Kâ2,5 region has also been shown
to shift with oxidation state.7

K-capture spectra for55Fe metal and55Fe2O3 are compared with
X-ray excited Kâ emission spectra for Mn metal and MnO in

Figure 1.8 The measurements9 were done at NSLS beamline
X-2510 and SSRL beamline 10-211 using a crystal array spec-
trometer.12,13 The Mn metal spectrum exhibits a Kâ1,3 peak at
6490.6 eV, and it has a broad, structureless tail extending∼20
eV to lower energy. The MnO spectrum has a Kâ1,3 peak shifted
1.4 eV to higher energy, and a Kâ′ maximum at 6477 eV. Similar
spectra have been reported for other Mn(II) complexes.4 The large
Kâ1,3-Kâ′ splitting for Mn(II) is attributed to a strong 3p-3d
exchange interaction for high-spin 3d5 materials.3

The55Fe metal K capture spectrum resembles that of the X-ray
excited Mn foil, and we find that the Kâ1,3 peaks are located at
the same energy, in contrast to a previous report that found a 0.6
eV shift.14 The capture spectrum Kâ1,3 peak is measurably sharper
(fwhm ≈ 3.0 vs 3.6 eV). One essential difference between the
two modes of excitation involves the effect of the core hole on
the valence electron distribution. Upon X-ray excitation of a 3dN

metal complex, the presence of a core hole lowers the energy of
the metal valence orbitals. The intermediate state can be expressed
as 1s13dN and an appreciable fraction of 1s13dN+1L, where L
represents a ligand hole. The 1s13dN+1L component gives rise to
additional fluorescence transitions which broaden the X-ray
spectrum. In contrast, after K-capture the 1s vacancy and the lower
nuclear charge approximately cancel, the intermediate electronic
configuration remains primarily 1s13dN, and the result is a sharper
spectrum.

It has been suggested that fewer multielectron excitations occur
during K-capture as opposed to X-ray excitation.15 Bianconi and
co-workers have documented 2-electron excitations in Mn
complexes,16 and fluorescence from these channels would be
expected at different energies from the normal Kâ features.
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Reduction or elimination of multielectron excitations may also
be a factor in the narrower line widths.

The K-capture Kâ spectrum for55Fe2O3 is also sharper than
that of the X-ray excited analogue, and the Kâ1,3 peak shows a
1.5 eV shift to higher energy from55Fe metal. The Kâ1,3 peak
has a weak shoulder on the low-energy side, and there is a clear
Kâ′ feature at about 17 eV lower energy. These features are
qualitatively reproduced by a ligand field multiplet simulation
for a d5 configuration with 10Dq) 2.4 eV.4 To our knowledge,
this is the first observation of significant chemical shifts and
spectral intensity changes in K capture spectra. The strength and
energy of the Kâ′ feature suggests that on the femtosecond time
scale of this experiment, the new (1s1) 55Mn ion maintains a high-
spin d5 valence configuration after K-capture.

Figure 2 compares the higher energy range containing the Kâ′′
and Kâ2,5 features. The latter region has been assigned to dipole
transitions from molecular orbitals with some Mn 4p character
and to 3df 1s quadrupole transitions.17-20 Both oxide spectra
show structure in the Kâ2,5 region, and the major features can be
fit with 2 Gaussians separated by∼3 eV (Figure 2). In a molecular
orbital scheme for octahedral complexes, the ligand p orbitals
transform with t1g, t2g, t1u, and t2u character.21 The dipole operator
transforms as t1u,22 and there are two t1u symmetry ligand orbitals,
formed from oxygen p(π) and p(σ) orbitals, that can mix with
the t1u metal 4p orbitals.23 We assign the main peak and lower
energy shoulder in the Kâ2,5 spectrum to transitions from these
orbitals. There is additional structure on the high-energy side of

the Kâ2,5 feature which can be fit with 2 Gaussians separated by
∼2.2 eV. We assign this structure to 3df1s quadrupole
transitions. The 2.2 eV splitting is consistent with the 10Dq value
used in the simulation and with d-d splittings observed in Fe2O3

photoelectron spectra.24 Finally, at∼22 eV below the emission
threshold, the oxide spectra exhibit Kâ′′ features that correspond
to oxygen 2s [t1u(σ)] f Mn 1s “crossover” transitions.7 It is clear
that the K-capture spectrum reveals a wealth of information about
the valence energy levels in an inorganic complex.

In conclusion, we have demonstrated for the first time the
significant chemical sensitivity of K-capture Kâ spectra. On the
basis of known fluorescence chemical shifts, this technique shows
potential for characterization of oxidation states,4 spin states,4,25

and even ligand type7 for specific sites in heterogeneous samples.
Because hard X-rays are used, K-capture methods could be
especially valuable for chemical characterization of surfaces under
catalytically relevant conditions. When the biochemistry permits,
labeling of individual metal sites in multinuclear enzymes might
also prove useful. Finally, K-capture spectroscopy should be a
useful probe of valence electronic structure, with less core hole
influence than conventional X-ray emission.
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Figure 1. Comparison of X-ray excited and K-capture Kâ emission
spectra. Top to bottom: (a) X-ray excited Kâ1,3 spectra for MnO (blue
line) vs Mn metal (red dashes); (b) K-capture Kâ spectra for55Fe2O3

(blue line) and Fe metal (red dashes); (c) a ligand field multiplet simulation
with 10Dq ) 2.4 eV.4

Figure 2. Valence band Kâ emission spectra. Top to bottom: (a) X-ray
excited Kâ2,5 and Kâ′′ spectra for MnO (blue line) vs Mn metal (red
dashes); (b) K-capture Kâ2,5 and Kâ′′ spectra for55Fe2O3 (blue line) and
Fe metal (red dashes); (c) a fit of the background-subtracted Kâ2,5 region
with 4 Gaussians.
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