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Abstract

This report is the description of a reaction that produces iron(0) from the room temperature reaction in THF solution between
[MgX(THF)2]4[FeH6] (X = Cl and Br) and FeCl2. The production of a-iron is demonstrated by powder XRD and Mössbauer spectros-
copy. The lattice spacings (d), isomer shift (d), nuclear quadrupole (DEQ), and magnetic hyperfine (Hhf) parameters determine that the
material consists of the bcc phase of iron.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Metallic iron can be readily prepared by a variety of
solution techniques that include: (1) expulsion of CO from
pentacarbonyliron(0) [1]; (2) reduction of iron halides in
aqueous solutions of borohydride [2], (3) or in nonaqueous
solutions using alkylborohydrides [3], aluminum alkyls [4],
transition metal organometals [5] and electrides [6]; and,
high-temperature hydrogenation of iron oxygen species
[7]. Reactions that form iron particles in solution using
Fe(CO)5 are known to follow a complex pathway [8].

The presence of a potentially oxidizing or a strong
ligand such as water and CO, respectively, makes the prep-
aration of systems approaching ‘‘naked iron’’ difficult.
Such compositions would be potentially useful. Amor-
phous and nanoparticulate iron species have been studied
extensively for their catalytic [9], magnetic [10], and bio-
medical uses [11].

Homoleptic complex hydrides unlike metal carbonyls
contain no traditional acceptor orbitals (e.g. p-acceptors)
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that would favor the formation of the zero-valent oxidation
state in metals. The ability of the hydride ligand to support
lower oxidation states has suggested [MgX(THF)2]4[FeH6]
(X = Cl and Br) as a precursor in the synthesis of iron mate-
rials. The reaction chemistry of the homoleptic transition
metal hydrides has escaped attention mostly, and to date
the known soluble homoleptic transition metal hydride
complexes encompass only ½MH6�4� (M = Fe and Ru)
and ½MH9�2� (M = Tc and Re) [12]. An iron deposition
reaction that utilizes the soluble homoleptic iron hydride
complex, ½FeH6�4�, would represent a novel approach.

Our previous results had shown that addition of alcohol
(water) results in oxidation of ½FeH6�4�:

½FeH6�4� þ 6ROH! ½Fe�2þ þ 6RO� þ 6H2 ð1Þ

(R = alkyl, H).
An H2 evolving reaction that utilizes water at neutral

pH would require a modest thermodynamic potential
(�0.41 V versus NHE) similar to the Fe2+/Fe half-reaction
(�0.44 V versus NHE) [13]. Coupling the reduction of a
transition metal halide such as iron(II) halide and concom-
itant oxidation of ½FeH6�4� might be written:
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½MgClðTHFÞ2�4½FeH6� þ 2FeCl2 !
THF

3½Fe� � S
þ 4MgXCl � nTHFþ 3H2 ðX ¼ Cl and BrÞ: ð2Þ

In THF solution it might be anticipated that the reac-
tions would be modulated due to the effects of ion pairing,
to make such a process uncertain. We now report our find-
ings to substantiate this reaction.
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Fig. 1. XRD pattern (upper trace) of intensity vs. position of sample
sealed with a Mylar barrier over glass. The lower trace of blank Mylar
over glass subtracted from the upper trace offset to show a 1.73 Å artifact.
Intense low angle reflections are outside the region of interest.

1 The iron species synthesized in these reactions are formulated as [Fe]ÆS.
This indicates the presence of surface substrates: MgX2 and THF are
confirmed by the analytical data (see Table 1, Supporting Information).
2. Experimental

The complex hydride, [MgCl(THF)2]4[FeH6] (X = Cl
and Br), was prepared and handled as were other reagents
as described previously [14].

In one case synthesis of iron in reaction (2) (X = Cl)
consisted of preparing a solution of 0.264 g (0.300 mmol)
[MgCl(THF)2]4[FeH6] in 50 mL THF and adding 0.076 g
(0.60 mmol) FeCl2 and stirring overnight at room temper-
ature. A Fe-57 enriched sample was also prepared analo-
gously with 57FeCl2.

Analysis of iron was performed by digesting each sam-
ple in sulfuric acid and forming the ½FeðphenÞ3�

2þ complex
which was determined spectrophotometrically at 508 nm
[15]. Further, magnesium analysis was determined using
ETDA titrations with Eriochrome-T as the indicator and
chloride where X = Cl was determined by AgNO3 titra-
tions with K2CrO4 as the indicator (Mohr method) [15].
Otherwise, combustion analyses (CHN), magnesium and
halide analyses, where X = Br were performed by the
Microanalytical Laboratory, Purdue University, West
Lafayette.

Diffraction patterns were obtained using a PANalytical
X’Pert PRO MPD X-ray diffraction system (PANalytical,
Almelo, The Netherlands) equipped with a PW3050/60
h–h goniometer and a Co-target X-ray tube operated at
40 keV and 35 mA (k = 1.790307 Å). Incident beam optics
consisted of an Fe beta filter, 0.04 radian Soller slit, a pro-
grammable divergence slit, and a beam mask set to illumi-
nate a 15 · 15 mm sample area. The diffracted beam optics
consisted of a programmable diffracted beam anti-scatter
slit, a 0.04 radian Soller slit, and a PW3015/20 X’Celerator
detector configured for an active length of 2.122� 2h. The
sample was mounted on a glass slide and covered with
6 lm thick Myar tape. The sample was scanned from at
0.033� steps with 60 s measurement time per step. The data
were analyzed with the X’Pert High Score Plus software
package and were converted to a fixed 1� divergence slit
prior to phase analysis and plotting.

The Mössbauer spectra, Fig. 2, were recorded at 78 K
using conventional sine-wave-acceleration spectrometer
with Oxford OptistatDN cryostat. The sample was sealed
in a nitrogen-filled glass vial after synthesis and shipped
to the University of California, Davis. The Mössbauer
absorber then was prepared in a pure dry nitrogen gas
glovebox by mixing the sample with deoxygenated boron
nitride to form finely dispersed material. The spectrometer
includes a Wissel 1200 Mössbauer velocity drive and a
LND-45431 proportional counter, and a room-tempera-
ture rhodium-matrix cobalt-57 source, which was cali-
brated at room temperature with 25 lm a-iron foil. The
sample measurement was conducted at liquid nitrogen tem-
perature to avoid exposure to oxygen.

3. Results and discussion

Performing reaction (2) above resulted in a pyrophoric
black solid, [Fe] Æ S, (see Section 2 and Table 1, Supporting
Information).1 The solution was stirred overnight and the
product collected on a magnetic stir bar (see Fig. 1S, Sup-
plementary Information), washed with THF and dried to
obtain quantitatively iron (98%). The composition of the
iron product was typically 83–86% iron. Evaporation of
the solvent yielded the magnesium halide by-product, e.g.
MgCl2 Æ nTHF (0.187 g, n = 1.25, see Table 1, Supporting
Information) isolated in 84–90%.

A powder XRD (Fig. 1) shows broad peaks that match
the pattern in the JCPDS standard 06-696, that corresponds
to single phase, bcc iron with reported lattice d spacings
(Miller indices, relative intensity) of 2.03 (110, 100), 1.43
(200, 10), and 1.17 (211, 20), 1.01 Å (22 0, 5) [16].

A Mössbauer spectrum of 57Fe-labeled product from
reaction (2) is illustrated in Fig. 2. The hyperfine field dis-
tribution was generated to fit the pattern by using the his-
togram and maximum entropy methods as options in the
data refinement [17]. The fitting indicates that the material
is in the a-iron phase where the line broadening of Möss-
bauer spectrum may be due to the heterogeneity of the
material, which causes a distribution of hyperfine fields
[18]. This is consistent with the broad bcc iron peaks in
the powder X-ray diffraction pattern. Data refinement
using a results in an isomer shift (d), nuclear quadrupole



Fig. 2. Mössbauer spectrum of iron sample from reaction (2) prepared
using 57FeCl2 at 78 K (black solid line) and simulation (red solid line).
Inset shows the magnetic hyperfine field distribution profile from 0 to 60
Tesla obtained from NORMOS-90 simulation. (see Supporting Informa-
tion, Table 2 for Mössbauer parameters). (For interpretation of the
references in colour in this figure legend, the reader is referred to the web
version of this article.)
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(DEQ), and magnetic hyperfine (ÆHhfæ) (see data refinement
Table 2, Supporting Information).

The conversion obtained in reaction (2) between
½FeH6�4� and [FeII]. might be considered a novel example
of synproportionation (comproportionation). Further, the
present reaction concerns the ability of hydrogen to bind
to a metal center and undergo reductive elimination [19].
Here, once oxidized, a proton from the resulting metal
complex can transfer to a bound hydride to form the H2

ligand. Molecular hydrogen can be expelled readily, in this
case, to produce ultimately elemental iron.

4. Conclusions

To summarize, a mild solution reaction has been devel-
oped to produce iron particles supported only by solvated
magnesium halide. These metallic iron particles are pro-
duced solely in the a-phase as deduced by XRD, and Möss-
bauer spectroscopy. Further work intends to pursue the
mechanism for the reaction, its generality, and the scope
of materials comprised of iron accessible by this technique.
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Appendix A. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.ica.2007.
09.032.
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[17] R.A. Brand, NORMOS-90 Mössbauer Fitting Program Package,
Wissenschaftliche Elektronik GmbH, Starnberg, Germany.

[18] M. Maillard, L. Motte, A.T. Ngo, M.P.J. Pileni, Chem. Phys. B 104
(2000) 11871.

[19] G. Kubas, Proc. Natl. Acad. Sci. USA 104 (2007) 6901.

http://dx.doi.org/10.1016/j.ica.2007.09.032
http://dx.doi.org/10.1016/j.ica.2007.09.032

	A novel solution reaction of hexahydridoferrate(4-) with iron(II) that produces iron particles
	Introduction
	Experimental
	Results and discussion
	Conclusions
	Acknowledgements
	Supplementary data
	References


