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ABSTRACT: The human mitochondrial protein, mitoNEET
(mNT), belongs to the family of small [2Fe-2S] NEET proteins
that bind their iron−sulfur clusters with a novel and characteristic
3Cys:1His coordination motif. mNT has been implicated in the
regulation of lipid and glucose metabolisms, iron/reactive oxygen
species homeostasis, cancer, and possibly Parkinson’s disease. The
geometric structure of mNT as a function of redox state and pH is
critical for its function. In this study, we combine 57Fe nuclear
resonance vibrational spectroscopy with density functional theory
calculations to understand the novel properties of this important
protein.

The NEET proteins comprise a family of small proteins
that bind their iron−sulfur [2Fe-2S] clusters with a novel

and characteristic 3Cys:1His coordination motif.1 The human
mitochondrial outer-membrane version, mitoNEET (mNT),
was discovered as a potential target of insulin-sensitizing
thiazolidinedione drugs.2 It has since been found to be
involved in the regulation of lipid and glucose metabolisms,3,4

iron/reactive oxygen species homeostasis4−6 with implication
in cancer,7−9 and possibly Parkinson’s disease.10 In vitro studies
revealed that mNT can transfer its cluster to a recipient
apoprotein11 under the strict control of the redox state (only
the oxidized cluster can be transferred)12 and regulation by
pH.12 Using complementary in cellulo experiments, we
demonstrated that mNT is involved in the pathway dedicated
to reactivation of cytosolic aconitase after an oxidative/
nitrosative stress. In vitro, mNT can transfer its clusters to
the apo form of the cytosolic aconitase, or iron-regulatory
protein (IRP-1), and reactivate it.5 However, in cellulo it is
unclear if the IRP-1 cluster is either fully destroyed or in the
[3Fe-4S] form. Likewise, it is unknown if mNT could rebuild
an active cluster in the [3Fe-4S] form of IRP-1.
Crystal structures13−15 of mNT reveal a homodimeric fold

with one [2Fe-2S] cluster per monomer and two domains: the
β cap and a cluster binding domain, with the cluster domain
shown in Figure 1.13 The presence of a histidine ligand to one
Fe site confers some unusual properties upon this cluster,
including a pH-dependent redox potential higher than that of
conventional [2Fe-2S] ferredoxin (Fd) proteins,16 proton-
coupled electron transfer (PCET) capability,17,18 and redox
control19 and pH modulation12 of its cluster transfer activity.

The mNT protein has already been studied by a variety of
spectroscopies, including ultraviolet−visible,5,20 electron para-
magnetic resonance (EPR),20−22 nuclear magnetic resonance
(NMR),5,19 Mössbauer,5,20 and Raman12,23 techniques, as well
as molecular dynamics.24,25 However, questions about the
drastic difference in behavior concerning cluster stability and
transfer between the reduced and oxidized forms of the protein
remain. Especially important is the characterization of the Fe−
His interaction through the coordinating Nδ atom. It has been
proposed that this bond may play a role in cluster lability.21,23

To better understand the special properties of the mNT
[2Fe-2S] cluster and to gain insights into the role of the
coordinating histidine in cluster labilization, we have utilized
57Fe nuclear resonance vibrational spectroscopy (NRVS)
combined with density functional theory (DFT) calculations.

■ RESULTS AND DISCUSSION

NRVS at pH 6.7. In our previous studies,12 we
demonstrated that the stability of the oxidized form of mNT
decreases at a more acidic pH. From pH 7.2 to 8, the oxidized
form is quite stable; however, the cluster stability significantly
decreases below pH 7. We decided to explore the oxidized and
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reduced form of mNT at pH 6.7 using NRVS, because this pH
represents a good balance between cluster stability and
physiological relevance.12 The NRVS data for oxidized and
reduced mNT are presented in Figure 2a. As previously
observed with [2Fe-2S] Fds, the low-frequency bands in the
range of 50−120 cm−1 correspond to large scale protein
motions and torsional modes of the [2Fe-2S] cluster, while the
features from ∼120 to 180 cm−1 involve significant bending
motion.26 At the other extreme, modes around ∼400 cm−1

involve stretching of the Fe centers together with bridging
sulfides (Sb). Upon reduction, the bands are generally red-
shifted by 10−20 cm−1, although there is not an exact 1:1
correspondence in modes consistent with other Fe−S
clusters.27 For the oxidized spectrum, there is fair corre-

spondence with the previously reported Raman spectrum
(Table S1).23

Qualitative assignment of the major features for the oxidized
sample can be performed by comparison with previous NRVS
and Raman results on [2Fe-2S] Fds (Table S1). A pair of high-
frequency bands (413 and 395 cm−1) align with similar bands
in Rc6 Fd.26 From the literature, these have been assigned to
asymmetric and symmetric motions of the [2Fe-2S] core,
respectively.26,28 The middle-frequency bands (∼300−373
cm−1) correspond mostly to various mixtures of Fe−St(Cys)
and Fe−Sb stretching motions.28 The 295 cm−1 feature is not
seen in the Rc6 Fd spectrum, but bands at 284 and 293 cm−1

are seen in the Raman spectrum of mNT; they are presumably

Figure 1. Cluster binding domain for mNT (left). Close-up of the 3Cys:1His [2Fe-2S] cluster up to the Cα atom of each residue with hydrogens
omitted (right). The structures shown are based on Protein Data Bank entry2QH7.13

Figure 2. 57Fe PVDOS for oxidized (blue) and reduced (red) mNT. (a) Experimental 57Fe PVDOS (NRVS) spectrum. (b) DFT-calculated 57Fe
PVDOS spectrum. (c) Individual 57Fe PVDOS-calculated transitions. The top inset shows the DFT-calculated vibrational motion (arrows) and
frequencies for the [2Fe-2S] core with lines indicating their experimental assignment in the oxidized and reduced forms. The motion depicted is of
the [2Fe-2S]2+ oxidized state calculation. Labels in the DFT-derived spectrum reflect band positions for comparison to experiment; the individual
mode energies are listed in Table S1.
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Fe−St(Cys) stretches “influenced by the presence of the Fe-
His moiety”.23

The NRVS band at 260 cm−1 has no correspondence in
conventional Fd spectra, but it can be related to bands seen at
267 and 265−274 cm−1 in mNT23 and Rieske protein29

Raman spectra, respectively. In the latter case, bands at 266
and 274 cm−1 were assigned to protonated hydrogen-bonded
imidazole and deprotonated hydrogen-bonded imidazolate,
respectively, both ligated to Fe with water serving as the H-
bond donor and/or acceptor.30

The reduced mNT NRVS shows the expected shifts to lower
frequencies that were seen in Fd proteins (Figure 2a).26 The
primary Fe−Sb bands shift by 13 and 20 cm−1 to 400 and 375
cm−1, respectively, approximately the same as seen in Fds.
Similar shifts are also seen in the Fe−St(Cys) region. The most
dramatic shift is the presumed Fe−Nδ(His) band migration
from 260 cm−1 to 225 and 212 cm−1. Because it is the His-
ligated Fe that is redox active,21 the latter bands can be
ascribed to the Fe(II)−Nδ(His) motion.
Observation of this candidate Fe(II)−Nδ(His) mode

illustrates an advantage of the NRVS technique: the reduced
species exhibits contributions to the NRVS signal of similar
quality from the Fe(II) and Fe(III) sites. In contrast, although
resonance Raman spectra of reduced Rieske proteins have
been reported,29,30 in both cases the authors concluded that
the spectrum primarily reports on the Fe(III) site of this mixed
valence species, because this is the source of the resonantly
excited S → Fe charge transfer band. NRVS allows inspection
of the mNT Fe(II)−Nhis vibrational modes for the first time.
Analogies can be made to the resonance Raman spectra of

deoxy-myoglobin (Mb), which also contains a high-spin
Fe(II)−histidine bond. Bands at 210, 218, and 225 cm−1

have been reported for deoxy-Mb at 150 K (or 213, 220, and
226 cm−1)31 and assigned to different conformational substates
with respect to the Fe−His bond.32 It is unclear if the pair of
features at 212 and 225 cm−1 in the reduced mNT spectrum
might analogously represent different conformations; for more
detailed insights into these features, we turned to DFT
calculations.
We performed DFT calculations on a truncated model of

mNT, involving the [2Fe-2S] cluster and its immediate protein
environment (Figure S1). The model includes the amino acid
backbone linking the four residues directly coordinating the
[2Fe-2S] core, with the noncoordinating residues truncated to
their Cα atoms (equivalent to alanine residues). The [2Fe-
2S]2+ and [2Fe-2S]+ states were calculated with and without
protonation of the Fe-coordinating histidine (His-87).
Regardless of the noncoordinating nitrogen Nε(His-87)
protonation status, our calculations indicated the histidine-
bound iron to be the redox active metal site, which is
reminiscent of reduced Rieske clusters in which the two-
histidine-bound Fe is reduced (see the Supporting Information
for details and alternative DFT models).33 The best agreement
with our experimental data is achieved by models with a
coordinating histidine imidazole for the reduced form and an
imidazolate for the oxidized forms, as shown by the simulated
NRVS profiles in Figure 2b. The protonation of the histidine
upon reduction at the pH 6.7 level is consistent with previous
pulsed EPR studies.21

For the oxidized cluster, starting from a high energy, the 413
and 395 cm−1 bands are confirmed to be asymmetric and
symmetric Fe−S modes of the entire [2Fe-2S]2+ core,
respectively (Supporting Information, animated vibrational

modes). The experimental pair of bands at 358 and 324 cm−1

are dominantly Fe−St/Nδ(His) asymmetric stretching modes
with the former mode strongly coupled to Fe−Sb motion and
the latter representing the most intense feature in the
spectrum. The intensity at 295 cm−1 is of special note;
inspection of the corresponding DFT mode reveals a
substantial Fe(III)−Nδ(His) stretching character weakly
coupled to Fe−Sb scissoring motion and Fe−St stretching
motion. Likewise, another experimental feature at 260 cm−1

similarly features Fe−Nδ(His) stretching, but with much less
coupling to Fe−St motion than the feature at 295 cm−1

resulting in a lower 57Fe PVDOS. A distribution of the Fe−
Nδ stretching-related modes in this region is consistent with
previous resonance Raman data.23

The experimental intensity observed at 170 cm−1 in the
oxidized cluster is predicted to be composed of multiple
vibrational modes. These modes are essentially Fe−St/Nδ

bending modes with the Fe atoms wagging relative to the
coordinating amino acids. Below 100 cm−1, a broad intensity is
observed that is composed of strongly delocalized vibrations
coupled to the protein backbone. Such modes are not
predicted by the truncated models used by DFT; however,
we do note that our simulations predict another bending mode
(calculated at 102 cm−1) with the Fe and coordinating amino
acids moving in a twisting motion that contributes significant
intensity in this region.
Upon reduction and protonation of the coordinating

imidazole, our calculations verify a shift of the high-energy
(>300 cm−1) Fe−S cluster modes to a lower energy, with their
characters otherwise similar to those of the oxidized state
modes. The NRVS band at 295 cm−1 in the oxidized cluster is
not present in the reduced system, implying a change in the
Fe−Nδ bonding. There are two modes in the reduced
spectrum calculated at 223 cm−1 (Figure 3) and 205 cm−1,

which upon inspection correspond to the modes at 304 and
265 cm−1, respectively, calculated for the oxidized cluster.
Although the core [2Fe-2S] motion is similar, the reduction
increases amount of motion of both the directly cluster-
coordinating and intervening amino acids (Figure S1). Finally,
the low-energy region for the reduced cluster is again
composed of various Fe−Nδ, Fe−St, and Fe−Sb bending

Figure 3. Reduced [2Fe-2S]+ state mNT mode calculated at 223
cm−1, showing the Fe(II)−Nδ(His) stretch. Only the [2Fe-2S] and
His-87 fragments of the DFT model are shown.
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modes with the strongest contribution from the Fe−St/Nδ

wagging motion.
The decrease in the frequency of the Fe−Nδ-derived

vibrations is consistent with our geometry-optimized structure
for the reduced cluster that predicts a 0.12 Å increase in the
Fe−Nδ(His) bond length upon cluster reduction and
concomitant protonation of His-87 (Supporting Information,
DFT structures). This is consistent with the greater donor
character of imidazolate than of imidazole.

■ DISCUSSION
Previous work on holo-mNT in the oxidized and reduced
states revealed very little modification of the tertiary and
quaternary structures between the two forms.19 This fact is
consistent with the minimal redox-dependent changes in the
low-energy region of the NRVS spectra that reflect diffuse
vibrations strongly coupled to the protein backbone. The holo-
mNT has been shown to be susceptible to cluster loss under
oxidizing conditions,5 and it has been proposed previously that
Fe−Nδ(His) bond scission at low pH could operate as a first
step of cluster loss.23 Our results verify that the Fe−His bond
is stronger in the oxidized state than in the reduced state, and
at first glance, the increased lability of the oxidized [2Fe-2S]
mNT cluster (relative to that of its reduced form) seems
paradoxical.
Previously, it has been observed in deoxyMb that iron−

histidine bond cleavage is driven by solvation and unfolding of
the active site at lower pH rather than protonation of the Fe-
coordinating imidazole.34 One possible opportunity for the loss
of the mNT cluster is the compression of the cluster upon
oxidation. The nearby Lys-55 (from the other monomer), near
the [2Fe-2S]-coordinating His-87, has been purported to
dynamically hydrogen bond to the imidazolate and protect it
from solvent exposure.25 Our geometry-optimized structures,
which reflect our experimental NRVS data, demonstrate a
shortening of the Fe−Nδ bond and of the opposing Fe−St
bonds on the opposite side of the cluster (Figure 4, right).
We found that including protonation of the Nε atom to

imidazole in the oxidized form in our DFT calculation leads to

a relative increase of 0.06 Å in the length of the Fe−Nδ bond
that is still 0.06 Å shorter than that of the reduced cluster. This
lengthening reflects an increased labilization of the bond and
possibly contributes to the pH dependence of the cluster loss.
Likewise, protonation to imidazole would eliminate the direct
Nε···Lys-55 H-bonding.25

Collectively, this implies that when the reduced cluster is
oxidized under non-acidic conditions to [2Fe-2S]2+ there is a
compression of the cluster geometry and coordinating
histidine. Although not dramatically different, this new
geometry decreases the dynamic residence time of the
hydrogen bond between His-87 and Lys-55 (Figure 4, left),
allowing greater access of the solvent to the protein cleft
between the two amino acids (relative to the reduced form).
Greater solvent access provides enthalpic pressure for Fe−Nδ

bond rupture.25 Additionally, at lower pH values, the cluster-
bound imidazole cannot interact with Lys-55 and the cleft can
be dynamically solvated more frequently;25 this is concomitant
with the increased level of destabilization of the Fe−Nδ bond
due to the reduced donor character of imidazole versus
imidazolate to the Fe atom that would lead to enhanced
geminate release of the [2Fe-2S]2+ cluster. This mechanism
explains the redox-dependent cluster loss and how it is enabled
by a lower pH in mNT but will require additional structural
studies for confirmation. However, the model is consistent
with many existing mutagenesis studies of the critical Lys-55.
Substitution with a guanidinium, K55R,24 showed a cluster
stability similar to that of the wild type expected of a similar H-
bonding pattern; conversion to the aliphatic residue, K55I,35

led to cluster stability that was greater than that of the wild
type, which is consistent with the decreased polarity of the
protein cleft gated by K55 and H87 (Figure 4, left), and
conversion to an anionic residue, K55E,11 revealed cluster
transfer that was slower than that of the wild type.

■ SUMMARY
Here we have demonstrated the utility of 57Fe NRVS in
probing the Fe−His interaction in both the reduced and the
oxidized mNT [2Fe-2S] cluster. Unlike resonance Raman

Figure 4. His-87 and Lys-55 (left) with the protein cleft (Val-98, Gly-99, and Pro-100), where gray represents the Connolly36 (solvent access)
surface excluding His-87 and Lys-55 and the dashed black line connects the two heavy (nitrogen) atoms within hydrogen bonding distance as
found in Protein Data Bank entry 2QH7.13 Geometry-optimized structure of the mNT [2Fe-2S] cluster (right). Labels indicate bond lengths (Å)
for the oxidized imidazolate-bound (blue) and reduced imidazole-bound (red) clusters.

Biochemistry pubs.acs.org/biochemistry Article

https://doi.org/10.1021/acs.biochem.1c00252
Biochemistry 2021, 60, 2419−2424

2422

https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.1c00252/suppl_file/bi1c00252_si_002.zip
https://pubs.acs.org/doi/10.1021/acs.biochem.1c00252?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.1c00252?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.1c00252?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.1c00252?fig=fig4&ref=pdf
pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.1c00252?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


spectroscopy, NRVS does not depend on optical excitations,
and thus, we were able to characterize the reduced Fe−Nδ

bond for the first time; it does not have excitation bands
amenable to resonance Raman,23 and there are no crystal
structures available for the mNT in the reduced state. The Fe−
N bond is stronger in the oxidized form; however, the protein
is more susceptible to cluster loss in this form.19 We identify
the dynamic solvation of the protein cleft proximal to the
cluster-coordinating histidine as a potential factor facilitating
cluster loss consistent with previous molecular dynamics
studies.25 This work highlights the strengths of 57Fe NRVS
to obtain detailed geometric and vibrational insights into Fe−S
clusters that cannot be accessed through conventional
methods.
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