- Berben Research Group

Menu:


Expanding the Scope of Aluminum Chemistry with Non-Innocent Ligands
Parsons, L. W. T.; Berben, L. A.: 2023, , submitted.
Protonation as a Strategy to Lower Overpotential in Electrocatalytic Reduction Reactions
Lee, K. Y. C.; Aceves, M.; Pattanayak, S.; Fettinger, J. C.; Berben, L. A.: 2023, , submitted.
Mechanistic Insights into Electrochemical Reactive Capture of CO2 with a Molecular Iron Catalyst
Siegel, R. E.; Aceves, M.; Berben, L. A.: 2023, , submitted.
Group 13 Ion Coordination to Pyridyl Breaks the Reduction Potential vs Hydricity Scaling Relationship for Dihydropyridinates
Parsons, L. W. T.; Fettinger, J. C.; Berben, L. A.: Chem. Sci. 2023, 14, Advance Article
Electrical-Biological Biohybrid System for Isobutanol Production
Treece, T. R.; Pattanayak, S.; Matson, M. M.; Cepeda, M. M.; Berben, L. A.; Atsumi, S.: Metab. Eng. 2023, 80, 142-150.
Metallated Dihydropyridinates: Prospects in Hydride Transfer and (Electro)catalysis
Parsons, L. W. T.; Berben, L. A.: Chem. Sci. 2023, 14, 8234 – 8248.
* Perspective Article
Group 13 Ion Coordination to Pyridyl Models NAD+ Reduction Potentials
Parsons, L. W. T.; Fettinger, J. C.; Berben, L. A.: Chem. Commun. 2023, 59, 9110-9113.
* RSC Fellows Collection
A Bifunctional Ionic Liquid for Capture and Electrochemical Conversion of CO2 to CO over Silver
Dongare, S.; Coskun, O. K.; Cagli, E.; Lee, K. Y. C.; Rao, G.; Britt, R. D.; Berben, L. A.; Gurkan, B.: ACS Catal. 2023, 13, 7812-7821.
Pre-equilibrium Reaction Mechanism as a Strategy to Enhance Rate and Lower Overpotential in Electrocatalysis
Pattanayak, S.; Berben, L. A.: J. Am. Chem. Soc. 2023, 145, 3419-3426.
Reactive Capture of CO2: Opportunities and Challenges
Siegel, R. E.; Pattanayak, S.; Berben, L. A.: ACS Catal. 2023, 13, 766-784.
* Invited Perspective Article
Using Substituted [Fe4N(CO)12]- as a Platform to Probe the Effect of Cation and Lewis Acid Location on Redox Potential
Pattanayak, S.; Loewen, N. D.; Berben, L. A.: Inorg. Chem. 2023, 62, 1919-1925.
* Forum Issue on Discrete Coordination Cages and Metal Clusters
Aluminum-Ligand Cooperative Bond Activation Initiates Transfer Hydrogenation Catalysis
Carr, C. R.; Vesto, J. I.; Xing, X.; Fettinger, J. C.; Berben, L. A.: ChemCatChem 2022, 14, e20210186. Invited Cover Art
* Special Issue on Main Group Catalysis
Synthesis of Unsupported Primary Phosphido Complexes of Aluminum(III)
Phan, N. A.; Sherbow, T. J.; Fettinger, J. C.; Berben, L. A.: Z. Anorg. Allg. Chem. 2021, 647 1824-1829.
* Special Issue Dedicated to Hansgeorg Schnoekel on the Occasion of his 80th Birthday
Metal Carbonyl Clusters of Groups 8 - 10: Synthesis and Catalysis
Cesari, C; Shon, J.-H.; Zacchinni, S.; Berben, L. A.: Chem. Soc. Rev. 2021, 50, 9503-9539.
* Themed Issue on Multimetallic Clusters: Synthesis, Reactivity and Properties
Cobalt Carbonyl Clusters Enable Independent Control of Two Proton Transfer Rates in the Mechanism for Hydrogen Evolution
Pattanayak, S.; Berben, L. A.: ChemElectroChem 2021, 8, 2488-2494.
* Special Collection in Memory of Prof. JM Saveant
Quantification of the Electrostatic Effect on Redox Potential by Positive Charges in a Catalyst Microenvironment
Loewen, N. D.; Pattanayak, S.; Herber, R.; Fettinger, J. C.; Berben, L. A.: J. Phys. Chem. Lett. 2021, 12, 3066-3073.
Group 7 and 8 Catalysts for Electrocatalytic CO2 Conversion
Loewen, N. D.; Berben, L. A.: in Comprehensive Coordination Chemistry III Constable, E. C.; Parkin, G.; Que, L. (Eds.), Elsevier, Amsterdam, 2021, 742-773.
Delocalization Tunable by Ligand Substitution in [L2Al]n- Complexes Highlights a Mechanism for Strong Electronic Coupling
Arnold, A.; Sherbow, T. J.; Bohanon, A. M.; Sayler, R. I.; Britt, R. D.; Smith, A. L.; Fettinger, J. C.; Berben, L. A.: Chem. Sci. 2021, 12, 675-682.
Ligand Conjugation Directs Formation of the 1,3-Dihydropyridinate Regioisomer
Sherbow, T. J.; Parsons, L. W. T.; Phan, N. A.; Fettinger, J. C.; Berben, L. A.: Inorg. Chem. 2020, 59, 17614-17619.
A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery
Arnold, A.; Dougherty, R. J.; Carr, C. R.; Reynolds, L. C.; Fettinger, J. C.; Augustin, A.; Berben, L. A.: J. Phys. Chem. Lett. 2020, 11, 8202-8207.
Syntheses of Square Planar Gallium Complexes and a Proton NMR Correlation Probing Metalloaromaticity
Bass, T. M.; Carr, C. R.; Sherbow, T. J.; Fettinger, J. C.; Berben, L. A.: Inorg. Chem. 2020, 59, 13517-13523.
Fast Proton Transfer and Hydrogen Evolution Mediated by [Co13C2(CO)24]4-
Carr, C. R.; Taheri, A.; Berben, L. A.: J. Am. Chem. Soc. 2020, 142, 12299-12305.
Breaking Scaling Relationships in CO2 Electroreduction with Isoelectronic Analogs [Fe4N(CO)12]- and [Fe3MnO(CO)12]-
Carr, C. R.; Cluff, D. B.; Berben, L. A.: Organometallics 2020, 39, 1658-1663.
* Special Issue on Organometallic Chemistry for Enabling Carbon Dioxide Utilization
Homogeneous Electrocatalytic Reduction of CO2
Carr, C, R.; Berben, L. A.: in CO2 Hydrogenation Catalysis Himeda, Y. (Ed.), Wiley-VCH, Hoboken 2020, 237-258.
Secondary Coordination Sphere Design to Modify Transport of Protons and CO2
Loewen N. D.; Berben, L. A.: Inorg. Chem. 2019, 58, 16849-16857.
Organic Electron Delocalization Modulated by Ligand Charge State in [L2M]n- Complexes of Group 13 Ions
Arnold, A.; Sherbow, T. J.; Sayler, R. I.; Britt, R. D.; Thompson, E. J.; Munoz, M. T.; Fettinger, J. C.; Berben, L. A.: J. Am. Chem. Soc. 2019, 141, 15792-15803.
Control of Substrates Beyond the Catalyst Active Site
Berben, L. A.; Loewen, N. D.; ACS Cent. Sci. 2019, 5, 1485-1487.
Electrochemical Reduction of N2 to NH3 at Low Potential by a Molecular Aluminum Complex
Sherbow, T. J.; Thompson, E. J.; Arnold, A.; Sayler, R. I.; Britt, R. D.; Berben, L. A.: Chem. Eur. J. 2019, 25, 454-458. Invited Cover Art
* Highlighted by the Editor in Chemistry Views, Wiley-VCH
New Characterization of V{N(SiMe3)2}3: Reductions of Tris[bis(trimethylsilyl)amido]vanadium(III) and -chromium(III) To Afford the Reduced Metal(II) Anions [M{N(SiMe3)2}3]- (M = V and Cr)
Wagner, C. L.; Phan, N. A.; Fettinger, J. C.; Berben, L. A.; Power, P. P.: Inorg. Chem. 2019, 58, 6095-6101.
Electrocatalytic Reduction of CO2 into Formate by Glassy Carbon Modified with [Fe4N(CO)11(PPh2Ph-linker)]-
Cluff, D. B.; Arnold, A.; Fettinger, J. C.; Berben, L. A.: Organometallics 2019, 38, 1230-1235.
* Special Issue on Organometallic Electrochemistry: Redox Catalysis Going the Smart Way
A Ligand Protonation Series in Al(III) Complexes of Tridentate Bis(enol)amine Ligand
Phan, N. A.; Fettinger, J. C.; Berben, L. A.: Organometallics 2018, 37, 4527-4533.
* Special Issue on Organometallic Complexes of Electropositive Elements for Selective Synthesis
Electrochemical Methods to Assess Kinetic Factors in CO2 Reduction to Formate: Implications for Improving Electrocatalyst Design
Taheri, A.; Carr, C. R.; Berben, L. A.: ACS Catalysis 2018, 8, 5787-5793.
Synthetic Chemistry Addressing Challenges in Energy and the Environment
De Bettencourt Diaz, A.; Berben, L. A.; Prieto, A. L.: Inorg. Chem. 2018, 57, 3656-3658.
Considering a Possible Role for [H-Fe4N(CO)12]2- in Selective Electrocatalytic CO2 Reduction to Formate by [Fe4N(CO)12]-
Taheri, A.; Loewen, N. D.; Cluff, D. B.; Berben, L. A.: Organometallics 2018, 37, 1087-1091. Invited Cover Art
Quantum Chemical Studies of Redox Properties and Conformational Changes of a Four-Center Iron CO2 Reduction Electrocatalyst
Jang, H.; Qiu, Y.; Hutchings, M. E.; Nguyen, M.; Berben, L. A.; Wang, L.-P.: Chem. Sci. 2018, 9, 2635-2852. Invited Cover Art
Reversible Coordination of H2 by a Distannyne
Wang, S.; Sherbow, T. J.; Berben, L. A.; Power, P. P.: J. Am. Chem. Soc. 2018, 140, 590-593. Invited Cover Art
Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts
Loewen, N. D.; Neelakantan, T. V.; Berben, L. A.: Acc. Chem. Res. 2017, 50, 2362-2370.
High Turnover in Electro-oxidation of Alcohols and Ethers with a Glassy Carbon-Supported Phenanthroimidazole Mediator
Johnson, B. M.; Franke, R.; Little, R. D.; Berben, L. A.: Chem. Sci. 2017, 8, 6493-6498.
Control of Ligand pKa Values Tunes the Electrocatalytic Dihydrogen Evolution Mechanism in a Redox-Active Aluminum(III) Complex
Sherbow, T. J.; Fettinger, J. C.; Berben, L. A.: Inorg. Chem. 2017, 56, 8651-8660.
* Forum on Advances in Main-Group Inorganic Chemistry
A Pendant Proton Shuttle on [Fe4N(CO)12]- Alters Product Selectivity in Formate vs. H2 Production via the Hydride [H-Fe4N(CO)12]-
Loewen, N. D.; Thompson, E. J.; Kagan, M.; Banales, C. L.; Myers, T. W.; Fettinger, J. C.; Berben, L. A.: Chem. Sci. 2016, 7, 2728-2735.
Insight into Varied Reaction Pathways for N-H and O-H Bond Activation by Bis(imino)pyridine Complexes of Al(III)
Sherbow, T. J.; Carr, C. R.; Saisu, T.; Fettinger, J. C.; Berben, L. A.: Organometallics 2016, 35, 9 - 14.
Making C-H Bonds with CO2: Production of Formate by Molecular Electrocatalysts
Taheri, A.; Berben, L. A.: Chem. Commun. 2016, 52, 1768-1777.
Dispersion Force Assisted Disproportionation: A Stable Two-Coordinate Copper(II) Complex
Wagner, C. L.; Tao, L.; Thompson, E. J.; Stich, T. A.; Guo, J.; Fettinger, J. C.; Berben, L. A.; Britt, R. D.; Nagase, S.; Power, P. P.: Angew. Chem. Intl. Ed. 2016, 55, 10444-10447.
Tailoring Electrocatalysts for Selective CO2 or H+ Reduction: Iron Carbonyl Clusters as a Case Study
Taheri, A.; Berben, L. A.: Inorganic Chemistry 2016, 55, 378-385.
* Forum on Small Molecule Activation from Biological Principles to Energy Applications: Part 3: Artificial Photosynthesis
* Highlighted in ACS Virtual Issue: The Way Forward in Molecular Electrocatalysis
Synthesis and Structural Characterization of Bis(imino)pyridine Ligand Complexes of Divalent Mg and Zn
Myers, T. W.; Sherbow, T. J.; Fettinger, J. C.; Berben, L. A.: Dalton Trans. 2016, 45, 5989-5998.
* Themed Issue on Main Group Transformations
An Iron Electrocatalyst for Selective Reduction of CO2 into Formate: Including Thermochemical Insights that Explain Improved Performance in Water
Taheri, A.; Thompson, E. J.; Fettinger, J. C.; Berben, L. A.: ACS Catalysis 2015, 5, 7140-7515.
Electrocatalytic Hydrogen Production by an Aluminum(III) Complex: Ligand-Based Proton and Electron Transfer
Thompson, E. J.; Berben, L. A.: Angew. Chem. Intl. Ed. 2015, 54, 11642-11646.
* Article Highlighted by Editor as Hot Article
Formation of a Stable Complex, RuCl2(S2CPPh3)(PPh3)2, Containing an Unstable Zwitterion from the Reaction of RuCl2(PPh3)3 with Carbon Disulfide
Ghiassi, K. B.; Walters, D. T.; Aristov, M. N.; Loewen, N. D.; Berben, L. A.; Rivera, M.; Olmstead, M. M.; Balch, A. L.: Inorg. Chem. 2015, 54, 4565-4573.
Non-Innocent Ligands
Berben, L. A.; de Bruin, B.; Heyduk, A. F.: Chem. Commun. 2015, 51, 1553-1554.
Mixed Interlayers at the Interface Between PEDOT:PSS and Conjugated Polymers Provide Charge Transport Control
Moule, A. J.; Jung, M.-C.; Rochester, C. W.; Tress, W.; LaGrange, D.; Jacobs, I. E.; Li, J.; Mauger, S. A.; Rail, M. D.; Lin, O.; Bilsky, D.; Allard, S.; Qi, Y.; Stroeve, P.; Reide, M.; Berben, L. A. Scherf, U.: J. Mater. Chem. C. 2015, 3, 2644-2676.
Catalysis by Aluminum(III) Complexes of Non-Innocent Ligands
Berben, L. A.: Chem. Eur. J. 2014, 21, 2734-2742.
Synthesis of Square Planar Aluminum(III) Complexes
Thompson, E. J.; Myers, T. W.; Berben, L. A.: Angew. Chem. Intl. Ed. 2014, 53, 14132-14134.
Metal-Mediated Transformations of Small Molecules
Berben, L. A.; Love, J. B.: Chem. Commun. 2014, 50, 7221-7222.
One-Electron Oxidation Chemistry and Subsequent Reactivity of Diiron-Imido Complexes
Kuppuswamy, S.; Powers, T. M.; Johnson, B. M.; Brozek, C. K.; Krogman, J. P.; Bezpalko, M. W.; Berben, L. A.; Keith, J. M.; Foxman, B. M.; Thomas, C. M.: Inorg. Chem. 2014, 53, 5429-5437.
Aluminum-Ligand Cooperation Promotes Selective Dehydrogenation of Formic Acid to H2 and CO2
Myers, T. W.; Berben, L. A.: Chem. Sci. 2014, 5, 2771-2777.
High Work-Function Hole Transport Layers by Self-Assembly Using a Fluorinated Additive
Mauger, S. A.; Li, J.; Ozmen, O. T.; Yang, A. Y.; Friedrich, S.; Rail, M. D.; Berben, L. A.; Moule, A. J.: J. Mater. Chem. C. 2014, 2, 115-123.
Electrocatalytic Hydrogen Evolution from Water by a Series of Iron Carbonyl Clusters
Nguyen, A. D.; Rail, M. D.; Shanmugam, M.; Fettinger, J. C.; Berben, L. A.: Inorg. Chem. 2013, 52, 12847-12854.
Aluminum-Amido Mediated Heterolytic Addition of Water Affords an Alumoxane
Myers, T. W.; Berben, L. A.: Organometallics 2013, 32, 6647-6649.
* Special Issue on Applications of Electrophilic Main Group Molecules
Aluminum-Ligand Cooperative N-H Bond Activation and an Example of Dehydrogenative Coupling
Myers, T. W.; Berben, L. A.: J. Am. Chem. Soc. 2013, 135, 9988-9990.
Redox Induced Carbon-Carbon Bond Formation Using Non-Innocent Ligands
Myers, T. W.; Yee, G. M.; Berben, L. A.: Eur. J. Inorg. Chem. 2013, 3831-3835.
* Cluster Issue on Small Molecule Activation by Reactive Metal Complexes
Redox Active Aluminum(III) Complexes Convert CO2 into MgCO3 or CaCO3 in a Synthetic Cycle Using Mg or Ca Metal
Myers, T. W.; Berben, L. A.: Chem. Commun. 2013, 49, 4175-4177.
* Emerging Investigators 2013 Special Issue
Metal-Metal Interactions in C3-Symmetric Diiron Imido Complexes Linked by Phosphinoamide Ligands
Subramaniam, K.; Powers, T.; Johnson, B. M.; Bezpalko, M.; Brozek, C.; Foxman, B.; Berben, L. A.; Thomas, C. M.: Inorg. Chem. 2012, 51, 4802-4811.
(IP)2GaIII Complexes Facilitate Net Two-Electron Redox Transformations (IP = a-Iminopyridine)
Cates, C. D.; Myers, T. W.; Berben, L. A.: Inorg. Chem. 2012, 51, 11891-11897.
Redox Routes to Substitution of Aluminum(III): Synthesis and Characterization of (IP-)2AlX (IP = a-Iminopyridine, X = Cl, Me, SMe, S2CNMe2, CCPh, N3, SPh, NHPh)
Myers, T. W.; Holmes, A. L.; Berben, L. A.: Inorg. Chem. 2012, 51, 8997-9004.
Mild Reduction Route to a Redox-Active Silicon Complex: Structure and Properties of (IP2-)2Si and (IP-)2Mg(THF) (IP = a-Iminopyridine)
Summerscales, O. T.; Myers, T. W.; Berben, L. A.: Organometallics 2012, 31, 3463-3465.
A Redox Series of Gallium(III) Complexes: Two-Electron Oxidation Affords a Gallium-thiolate Complex
Kowolik, K.; Shanmugam, M.; Myers, T. W.; Cates, C. D.; Berben, L. A.: Dalton Trans. 2012, 41, 7969-7976.
* New Talent North America Issue
A Sterically Demanding Iminopyridine Ligand Affords Redox-Active Complexes of Aluminum(III) and Gallium(III)
Myers, T. W.; Berben, L. A.: Inorg. Chem. 2012, 51, 1480-1488.
* Highlighted in ACS Virtual Issue: Synthetic Inorganic Chemistry
Directing the Reactivity of [HFe4N(CO)12]- Toward H+ or CO2 Reduction by Understanding the Electrocatalytic Mechanism
Rail, M. D.; Berben, L. A.: J. Am. Chem. Soc. 2011, 133, 18577-18579.
Simple Routes to Bulky, Silyl-Substituted Acetylide Ligands and Examples of V(III), Fe(II), and Mn(II) Complexes
Yee, G. M.; Kowolik, K.; Manabe, S.; Fettinger, J. C.; Berben, L. A.: Chem. Commun. 2011, 47, 11680-11682.
Countercations Direct One- or Two-Electron Oxidation of an Al(III) Complex and Al(III)-oxo Intermediates Activate C-H bonds
Myers, T. W.; Berben, L. A.: J. Am. Chem. Soc. 2011, 133, 11865-11867.
* Highlighted in ACS Virtual Issue: Synthetic Inorganic Chemistry
A Redox Series of Aluminum Complexes: Characterization of Four Oxidation States Including a Ligand Biradical State Stabilized via Exchange Coupling
Myers, T. W.; Kazem, N.; Stoll, S.; Britt, R. D.; Shanmugam, M.; Berben, L. A.: J. Am. Chem. Soc. 2011, 133, 8662-8672.
* Highlighted in ACS Virtual Issue: Synthetic Inorganic Chemistry


Palladium(II) complexes of imidazolin-2-ylidene N-heterocyclic carbene ligands with redox-active dimethoxyphenyl or (hydro)quinonyl substituents
Berben, L. A.; Craig, D. C.; Gimbert-Surinach, C.; Robinson, A.; Sugiyarto, K. H.; Colbran, S. B.: Inorg. Chim. Acta 2011, 370, 374-381.
Enhancing the magnetic anisotropy of cyano-ligated chromium(II) and chromium(III) complexes via heavy halide ligand effects
Karunadasa, H. I.; Arquero, K. D.; Berben, L. A.; Long, J. C.: Inorg. Chem. 2010, 49, 4738-4740.
Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces
Berben, L. A.; Peters, J. C.: Chem. Commun. 2010, 46, 398-400.
Redox-rich dicobalt macrocycles as templates for multi-electron transformations
Szymczak, N. K.; Berben, L. A.; Peters, J. C.: Chem. Commun. 2009, 44, 6729-6731.
Dimanganese and diiron complexes of a binucleating cyclam ligand: four-electron, reversible oxidation chemistry at high potentials
Berben, L. A.; Peters, J. C.: Inorg. Chem. 2008, 47, 11669-11679.
Dinitrogen and acetylide complexes of low-valent chromium
Berben, L. A.; Kozimor, S. A.: Inorg. Chem. 2008, 47, 4639-4647.
Angle dependent electronic effects in 4,4-bypridine-bridged Ru3 triangle and Ru4 square complexes
Berben, L. A.; Faia, M. C.; Crawford, N. R. M.; Long, J. R.: Inorg. Chem. 2006, 45, 6378-6386.
Homoleptic trimethylsilylacetylide complexes of chromium(III), iron(II), and cobalt(III): syntheses, structures, and ligand field parameters
Berben, L. A.; Long, J. R.: Inorg. Chem. 2005, 44, 8459-8468.
Studies on the formation of glutathionylcobalamin: any free intracellular aquocobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin
Xia, L.; Cregan, A. G.; Berben, L. A.; Brasch, N. E.: Inorg. Chem. 2004, 43, 6848-6857.
Synthesis and characterization of a decacobalt carbonyl cluster with two semi-interstitial phosphorus atoms
Hong, C. S.; Berben, L. A.; Long, J. R.: Dalton. Trans. 2003, 2119-2120.
Synthesis and alkali metal ion-binding properties of a chromium(III) triacetylide complex
Berben, L. A.; Long, J. R.: J. Am. Chem. Soc. 2002, 124, 11588-11589.
[(Cyclen)4Ru4(pz)4]9+: a Creutz-Taube square
Lau, V. C.; Berben, L. A.; Long, J. R.: J. Am. Chem. Soc. 2002, 124, 9042-9043.
Supramolecular motifs in four pseudo-polymorphic crystals of [Fe(phen)3](I3)2. (solvent): solvent = acetone, CH2Cl2, CH3CN, toluene or H2O
Horn, C.; Berben, L.; Chow, H.; Scudder, M.; Dance, I.: Cyst. Eng. Commun. 2002, 4, 7.